Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
BMC Psychiatry ; 23(1): 461, 2023 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-37353766

RESUMEN

Psychiatric disorders are complex clinical conditions with large heterogeneity and overlap in symptoms, genetic liability and brain imaging abnormalities. Building on a dimensional conceptualization of mental health, previous studies have reported genetic overlap between psychiatric disorders and population-level mental health, and between psychiatric disorders and brain functional connectivity. Here, in 30,701 participants aged 45-82 from the UK Biobank we map the genetic associations between self-reported mental health and resting-state fMRI-based measures of brain network function. Multivariate Omnibus Statistical Test revealed 10 genetic loci associated with population-level mental symptoms. Next, conjunctional FDR identified 23 shared genetic variants between these symptom profiles and fMRI-based brain network measures. Functional annotation implicated genes involved in brain structure and function, in particular related to synaptic processes such as axonal growth (e.g. NGFR and RHOA). These findings provide further genetic evidence of an association between brain function and mental health traits in the population.


Asunto(s)
Conectoma , Salud Mental , Humanos , Conectoma/métodos , Bancos de Muestras Biológicas , Encéfalo/diagnóstico por imagen , Reino Unido , Estudio de Asociación del Genoma Completo , Imagen por Resonancia Magnética/métodos
2.
Neurobiol Aging ; 127: 99-112, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37045620

RESUMEN

Neurodegenerative diseases are a group of disorders characterized by neuronal cell death causing a variety of physical and mental problems. While these disorders can be characterized by their phenotypic presentation within the nervous system, their aetiologies differ to varying degrees. The majority of previous genetic evidence for overlap between neurodegenerative diseases has been pairwise. In this study, we aimed to identify overlap between the 4 investigated neurodegenerative disorders (Alzheimer's disease, amyotrophic lateral sclerosis, Lewy body dementia, and Parkinson's disease) at the variant, gene, genomic locus, gene-set, cell, or tissue level, with specific interest in overlap between 3 or more diseases. Using local genetic correlation, we found 2 loci (TMEM175 and HLA) that were shared across 3 disorders. We also highlighted genes, genomic loci, gene sets, cell types, and tissue types which may be important to 2 or more disorders by analyzing the association of variants with a common factor estimated from the 4 disorders. Our study successfully highlighted genetic loci and tissues associated with 2 or more neurodegenerative diseases.


Asunto(s)
Enfermedad de Alzheimer , Esclerosis Amiotrófica Lateral , Enfermedad por Cuerpos de Lewy , Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Humanos , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad por Cuerpos de Lewy/genética , Enfermedad por Cuerpos de Lewy/metabolismo , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Esclerosis Amiotrófica Lateral/genética
3.
eNeuro ; 10(4)2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36882310

RESUMEN

Functional connectivity within resting-state networks (RSN-FC) is vital for cognitive functioning. RSN-FC is heritable and partially translates to the anatomic architecture of white matter, but the genetic component of structural connections of RSNs (RSN-SC) and their potential genetic overlap with RSN-FC remain unknown. Here, we perform genome-wide association studies (N discovery = 24,336; N replication = 3412) and annotation on RSN-SC and RSN-FC. We identify genes for visual network-SC that are involved in axon guidance and synaptic functioning. Genetic variation in RSN-FC impacts biological processes relevant to brain disorders that previously were only phenotypically associated with RSN-FC alterations. Correlations of the genetic components of RSNs are mostly observed within the functional domain, whereas less overlap is observed within the structural domain and between the functional and structural domains. This study advances the understanding of the complex functional organization of the brain and its structural underpinnings from a genetics viewpoint.


Asunto(s)
Mapeo Encefálico , Estudio de Asociación del Genoma Completo , Imagen por Resonancia Magnética , Encéfalo/diagnóstico por imagen , Cognición , Red Nerviosa/diagnóstico por imagen
4.
Biol Psychiatry ; 94(2): 174-183, 2023 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-36803976

RESUMEN

BACKGROUND: Schizophrenia (SCZ) and bipolar disorder (BD) are severe psychiatric conditions that can involve symptoms of psychosis and cognitive dysfunction. The 2 conditions share symptomatology and genetic etiology and are regularly hypothesized to share underlying neuropathology. Here, we examined how genetic liability to SCZ and BD shapes normative variations in brain connectivity. METHODS: We examined the effect of the combined genetic liability for SCZ and BD on brain connectivity from two perspectives. First, we examined the association between polygenic scores for SCZ and BD for 19,778 healthy subjects from the UK Biobank and individual variation in brain structural connectivity reconstructed by means of diffusion weighted imaging data. Second, we conducted genome-wide association studies using genotypic and imaging data from the UK Biobank, taking SCZ-/BD-involved brain circuits as phenotypes of interest. RESULTS: Our findings showed brain circuits of superior parietal and posterior cingulate regions to be associated with polygenic liability for SCZ and BD, circuitry that overlaps with brain networks involved in disease conditions (r = 0.239, p < .001). Genome-wide association study analysis showed 9 significant genomic loci associated with SCZ-involved circuits and 14 loci associated with BD-involved circuits. Genes related to SCZ-/BD-involved circuits were significantly enriched in gene sets previously reported in genome-wide association studies for SCZ and BD. CONCLUSIONS: Our findings suggest that polygenic liability of SCZ and BD is associated with normative individual variation in brain circuitry.


Asunto(s)
Trastorno Bipolar , Conectoma , Esquizofrenia , Humanos , Esquizofrenia/diagnóstico por imagen , Esquizofrenia/genética , Trastorno Bipolar/genética , Estudio de Asociación del Genoma Completo , Predisposición Genética a la Enfermedad
5.
Commun Biol ; 5(1): 710, 2022 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-35842455

RESUMEN

Cerebellar volume is highly heritable and associated with neurodevelopmental and neurodegenerative disorders. Understanding the genetic architecture of cerebellar volume may improve our insight into these disorders. This study aims to investigate the convergence of cerebellar volume genetic associations in close detail. A genome-wide associations study for cerebellar volume was performed in a discovery sample of 27,486 individuals from UK Biobank, resulting in 30 genome-wide significant loci and a SNP heritability of 39.82%. We pinpoint the likely causal variants and those that have effects on amino acid sequence or cerebellar gene-expression. Additionally, 85 genome-wide significant genes were detected and tested for convergence onto biological pathways, cerebellar cell types, human evolutionary genes or developmental stages. Local genetic correlations between cerebellar volume and neurodevelopmental and neurodegenerative disorders reveal shared loci with Parkinson's disease, Alzheimer's disease and schizophrenia. These results provide insights into the heritable mechanisms that contribute to developing a brain structure important for cognitive functioning and mental health.


Asunto(s)
Estudio de Asociación del Genoma Completo , Esquizofrenia , Encéfalo , Estudio de Asociación del Genoma Completo/métodos , Humanos , Salud Mental , Polimorfismo de Nucleótido Simple , Esquizofrenia/genética
6.
Transl Psychiatry ; 11(1): 88, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33526782

RESUMEN

Lasting effects of adversity, such as exposure to childhood adversity (CA) on disease risk, may be embedded via epigenetic mechanisms but findings from human studies investigating the main effects of such exposure on epigenetic measures, including DNA methylation (DNAm), are inconsistent. Studies in perinatal tissues indicate that variability of DNAm at birth is best explained by the joint effects of genotype and prenatal environment. Here, we extend these analyses to postnatal stressors. We investigated the contribution of CA, cis genotype (G), and their additive (G + CA) and interactive (G × CA) effects to DNAm variability in blood or saliva from five independent cohorts with a total sample size of 1074 ranging in age from childhood to late adulthood. Of these, 541 were exposed to CA, which was assessed retrospectively using self-reports or verified through social services and registries. For the majority of sites (over 50%) in the adult cohorts, variability in DNAm was best explained by G + CA or G × CA but almost never by CA alone. Across ages and tissues, 1672 DNAm sites showed consistency of the best model in all five cohorts, with G × CA interactions explaining most variance. The consistent G × CA sites mapped to genes enriched in brain-specific transcripts and Gene Ontology terms related to development and synaptic function. Interaction of CA with genotypes showed the strongest contribution to DNAm variability, with stable effects across cohorts in functionally relevant genes. This underscores the importance of including genotype in studies investigating the impact of environmental factors on epigenetic marks.


Asunto(s)
Metilación de ADN , Epigénesis Genética , Adulto , Epigenómica , Femenino , Genotipo , Humanos , Recién Nacido , Embarazo , Estudios Retrospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA