Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Phys Chem Chem Phys ; 22(18): 10063-10075, 2020 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-32338257

RESUMEN

In the present work, the effect of doping on electronic properties in bulk purified and filled arc-discharge single-walled carbon nanotubes samples is studied for the first time by in situ Raman spectroelectrochemical method. A major challenge to turn the potential of SWCNTs into customer applications is to reduce or eliminate their contaminants by means of purification techniques. Besides, the endohedral functionalization of SWCNTs with organic and inorganic materials (i.e. metal halides) allows the development of tailored functional hybrids. Here, we report the purification and endohedral functionalization of SWCNTs with doping affecting the SWCNTs. Steam-purified SWCNTs have been filled with selected lutetium(iii) halides, LuCl3, LuBr3, LuI3, and sealed using high-temperature treatment, yielding closed-ended SWCNTs with the filling material confined in the inner cavity. The purified SWCNTs were studied using TGA, EDX, STEM and Raman spectroscopy. The lutetium(iii) halide-filled SWCNTs (LuX3@SWCNTs) were characterized using STEM, EDX, Raman spectroscopy and in situ Raman spectroelectrochemistry. It was found that there is a charge transfer between the SWCNTs and the encapsulated LuX3 (X = Cl, Br, I). The obtained data testify to the acceptor doping effect of lutetium(iii) halides incorporated into the SWCNT channels, which is accompanied by the charge transfer from nanotube walls to the introduced substances.

2.
Chemistry ; 24(59): 15903-15911, 2018 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-30089194

RESUMEN

The supercritical carbon dioxide (scCO2 ) synthesis of non-reduced graphene oxide (GO) aerogels from dispersions of GO in ethanol is here reported as a low-cost, efficient, and environmentally friendly process. The preparation is carried out under the mild conditions of 333 K and 20 MPa. The high aspect ratio of the used GO sheets (ca. 30 µm lateral dimensions) allowed the preparation of aerogel monoliths by simultaneous scCO2 gelation and drying. Solid-state characterization results indicate that a thermally-stable mesoporous non-reduced GO aerogel was obtained by using the supercritical procedure, keeping most of the surface oxygenated groups on the GO sheets, thus, facilitating further functionalization. Moreover, the monoliths have a very low density, high specific surface area, and excellent mechanical integrity; characteristics which rival those of most light-weight reduced graphene aerogels reported in the literature.

3.
Chemphyschem ; 18(8): 935-941, 2017 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-28181723

RESUMEN

N-doped reduced graphene oxide (RGO) has been prepared in bulk form by laser irradiation of graphene oxide (GO) dispersed in an aqueous solution of ammonia. A pulsed Nd:YAG laser with emission wavelengths in the infrared (IR) 1064 nm, visible (Vis) 532 nm, and ultraviolet (UV) 266 nm spectral regions was employed for the preparation of the N-doped RGO samples. Regardless of the laser energy employed, the resulting material presents a higher fraction of pyrrolic nitrogen compared to nitrogen atoms in pyridinic and graphitic coordination. Noticeably, whereas increasing the laser fluence of UV and Vis wavelengths results in an increase in the total amount of nitrogen, up to 4.9 at. % (UV wavelength at 60 mJ cm-2 fluence), the opposite trend is observed when the GO is irradiated in ammonia solution through IR processing. The proposed laser-based methodology allows the bulk synthesis of N-doped reduced graphene oxide in a simple, fast, and cost efficient manner.

4.
Nano Lett ; 16(5): 3221-9, 2016 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-27080194

RESUMEN

Manipulating properties of matter at the nanoscale is the essence of nanotechnology, which has enabled the realization of quantum dots, nanotubes, metamaterials, and two-dimensional materials with tailored electronic and optical properties. Two-dimensional semiconductors have revealed promising perspectives in nanotechnology. However, the tunability of their physical properties is challenging for semiconductors studied until now. Here we show the ability of morphological manipulation strategies, such as nanotexturing or, at the limit, important surface roughness, to enhance light absorption and the luminescent response of atomically thin indium selenide nanosheets. Besides, quantum-size confinement effects make this two-dimensional semiconductor to exhibit one of the largest band gap tunability ranges observed in a two-dimensional semiconductor: from infrared, in bulk material, to visible wavelengths, at the single layer. These results are relevant for the design of new optoelectronic devices, including heterostructures of two-dimensional materials with optimized band gap functionalities and in-plane heterojunctions with minimal junction defect density.

5.
Small ; 12(21): 2893-905, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27079833

RESUMEN

Carbon nanotubes (CNTs) have been advocated as promising nanocarriers in the biomedical field. Their high surface area and needle-like shape make these systems especially attractive for diagnostic and therapeutic applications. Biocompatibility, cell internalization, biodistribution, and pharmacokinetic profile have all been reported to be length dependent. In this study, further insights are gotten on the role that the length of CNTs plays when developing novel contrast agents for magnetic resonance imaging (MRI). Two samples of CNTs with different length distribution have been decorated with radio-labeled iron oxide nanoparticles. Despite characterization of the prepared hybrids reveals a similar degree of loading and size of the nanoparticles for both samples, the use of short CNTs is found to enhance the MRI properties of the developed contrast agents both in vitro and in vivo compared to their long counterparts.


Asunto(s)
Imagen por Resonancia Magnética/métodos , Nanotubos de Carbono/química , Animales , Línea Celular , Medios de Contraste/química , Femenino , Ratones , Ratones Endogámicos C57BL , Microscopía Electrónica de Transmisión
6.
Chemistry ; 22(15): 5096-101, 2016 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-26892445

RESUMEN

An efficient process to produce boron cluster-graphene oxide nanohybrids that are highly dispersible in water and organic solvents is established for the first time. Dispersions of these nanohybrid materials in water were extraordinarily stable after one month. Characterization of hybrids after grafting of appropriate cobaltabisdicarbollide and closo-dodecaborate derivatives onto the surface of graphene oxide (GO) was done by FT-IR, XPS, and UV/Vis. Thermogravimetric analysis (TGA) clearly shows a higher thermal stability for the modified-GO nanohybrids compared to the parent GO. Of particular note, elemental mapping by energy-filtered transmission electron microscopy (EFTEM) reveals that a uniform decoration of the graphene oxide surface with the boron clusters is achieved under the reported conditions. Therefore, the resulting nanohybrid systems show exceptional physico-chemical and thermal properties, paving the way for an enhanced processability and further expanding the range of application for graphene-based materials.

7.
Chemistry ; 21(47): 16792-5, 2015 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-26441132

RESUMEN

As-produced single-walled carbon nanotubes (SWCNTs) tend to aggregate in bundles due to π-π interactions. Several approaches are nowadays available to debundle, at least partially, the nanotubes through surface modification by both covalent and noncovalent approaches. Herein, we explore different strategies to afford an efficient covalent functionalization of SWCNTs with cobaltabisdicarbollide anions. Aberration-corrected HRTEM analysis reveals the presence of metallacarboranes along the walls of the SWCNTs. This new family of materials presents an outstanding water dispersibility that facilitates its processability for potential applications.

8.
Phys Chem Chem Phys ; 17(47): 31662-9, 2015 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-26556303

RESUMEN

The endohedral functionalization of carbon nanotubes with both organic and inorganic materials allows the development of tailored functional hybrids whose properties benefit from the synergistic effects of the constituent compounds. Bulk filling of carbon nanotubes (CNTs) results in samples that contain a large amount of non-encapsulated material external to the CNTs. The presence of the external material is detrimental to the processing and application of the resulting hybrids. Here we introduce the use of UV-Vis spectroscopy to monitor the cleaning process, i.e. the elimination of non-encapsulated compounds. Chrome azurol S has been employed to assess the bulk removal of external samarium(iii) chloride from filled single-walled carbon nanotubes. Chrome azurol S is of interest since it can be used to quantify a large variety of materials in a fast, accurate and reliable manner. The parameters that control the cleaning process have been optimized, including the time, temperature, volume and sonication, to achieve a fast and complete removal of the external material.

9.
Adv Funct Mater ; 24(13): 1880-1894, 2014 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-26097444

RESUMEN

Carbon nanotubes (CNTs) have been proposed as one of the most promising nanomaterials to be used in biomedicine for their applications in drug/gene delivery as well as biomedical imaging. The present study developed radio-labeled iron oxide decorated multi-walled CNTs (MWNT) as dual magnetic resonance (MR) and single photon emission computed tomography (SPECT) imaging agents. Hybrids containing different amounts of iron oxide were synthesized by in situ generation. Physicochemical characterisations revealed the presence of superparamagnetic iron oxide nanoparticles (SPION) granted the magnetic properties of the hybrids. Further comprehensive examinations including high resolution transmission electron microscopy (HRTEM), fast Fourier transform simulations (FFT), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) assured the conformation of prepared SPION as γ-Fe2O3. High r2 relaxivities were obtained in both phantom and in vivo MRI compared to the clinically approved SPION Endorem®. The hybrids were successfully radio-labeled with technetium-99m through a functionalized bisphosphonate and enabled SPECT/CT imaging and γ-scintigraphy to quantitatively analyze the biodistribution in mice. No abnormality was found by histological examination and the presence of SPION and MWNT were identified by Perls stain and Neutral Red stain, respectively. TEM images of liver and spleen tissues showed the co-localization of SPION and MWNT within the same intracellular vesicles, indicating the in vivo stability of the hybrids after intravenous injection. The results demonstrated the capability of the present SPION-MWNT hybrids as dual MRI and SPECT contrast agents for in vivo use.

10.
Chemistry ; 20(38): 11999-2003, 2014 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-25116072

RESUMEN

Nitrogen-doped reduced graphene oxide (N-doped RGO) samples with a high level of doping, up to 13 wt. %, have been prepared by annealing graphene oxide under a flow of pure ammonia. The presence of nitrogen within the structure of RGO induces a remarkable increase in the thermal stability against oxidation by air. The thermal stability is closely related with the temperature of synthesis and the nitrogen content. The combustion reaction of nitrogen in different coordination environments (pyridinic, pyrrolic, and graphitic) is analyzed against a graphene fragment (undoped) from a thermodynamic point of view. In agreement with the experimental observations, the combustion of undoped graphene turns out to be more spontaneous than when nitrogen atoms are present.

11.
Nat Mater ; 9(6): 485-90, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20473287

RESUMEN

Functionalization of nanomaterials for precise biomedical function is an emerging trend in nanotechnology. Carbon nanotubes are attractive as multifunctional carrier systems because payload can be encapsulated in internal space whilst outer surfaces can be chemically modified. Yet, despite potential as drug delivery systems and radiotracers, such filled-and-functionalized carbon nanotubes have not been previously investigated in vivo. Here we report covalent functionalization of radionuclide-filled single-walled carbon nanotubes and their use as radioprobes. Metal halides, including Na(125)I, were sealed inside single-walled carbon nanotubes to create high-density radioemitting crystals and then surfaces of these filled-sealed nanotubes were covalently modified with biantennary carbohydrates, improving dispersibility and biocompatibility. Intravenous administration of Na(125)I-filled glyco-single-walled carbon nanotubes in mice was tracked in vivo using single-photon emission computed tomography. Specific tissue accumulation (here lung) coupled with high in vivo stability prevented leakage of radionuclide to high-affinity organs (thyroid/stomach) or excretion, and resulted in ultrasensitive imaging and delivery of unprecedented radiodose density. Nanoencapsulation of iodide within single-walled carbon nanotubes enabled its biodistribution to be completely redirected from tissue with innate affinity (thyroid) to lung. Surface functionalization of (125)I-filled single-walled carbon nanotubes offers versatility towards modulation of biodistribution of these radioemitting crystals in a manner determined by the capsule that delivers them. We envisage that organ-specific therapeutics and diagnostics can be developed on the basis of the nanocapsule model described here.


Asunto(s)
Nanotecnología/tendencias , Nanotubos de Carbono/química , Acetilglucosamina/metabolismo , Metabolismo de los Hidratos de Carbono , Glicosilación , Humanos , Marcaje Isotópico/métodos , Microscopía Electrónica de Transmisión de Rastreo/métodos , Nanotecnología/métodos , Oxidación-Reducción , Radioisótopos/metabolismo , Radioisótopos/farmacocinética , Estómago/diagnóstico por imagen , Glándula Tiroides/diagnóstico por imagen , Distribución Tisular , Tomografía Computarizada por Rayos X/métodos
12.
Front Bioeng Biotechnol ; 9: 644793, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33777916

RESUMEN

We have employed fullerenes as versatile agents to "cork" the open tips of multiwalled carbon nanotubes (MWCNTs), and as promoting species for the release of the inorganic material filled within the nanotubes' cavities. High Z element compounds, namely, PbI2, ZnI2, and CeI3, were chosen to easily determine the presence of the filler inside the hosting nanotubes by transmission electron microscopy (TEM). Fullerenes can isolate inorganic nanostructures confined within the hollow cavities of MWCNTs, which allows the removal of the external material remnant after the filling. Otherwise, taking advantage of the affinity of fullerenes with selected solvents, we have confirmed the ability of the C60 molecules to promote the displacement of the inorganic guest from the host. We propose two different strategies to trigger the release, employing vapor and liquid phase treatments. The first protocol involves annealing filled MWCNTs in presence of fullerenes (to obtain C60PbI2@MWCNTs) and the subsequent washing of the sample in ethanol under mild conditions. On the other hand, the simultaneous introduction of the C60 molecules and the liberation of the guest are produced by a single step wet procedure; the latter being potentially useful when materials that are not stable at high temperatures are employed for filling.

13.
Nanomaterials (Basel) ; 11(12)2021 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-34947714

RESUMEN

Carbon nanotubes (CNTs), owing to their high surface area-to-volume ratio and hollow core, can be employed as hosts for adsorbed and/or encapsulated molecules. At high temperatures, the ends of CNTs close spontaneously, which is relevant for several applications, including catalysis, gas storage, and biomedical imaging and therapy. This study highlights the influence of the annealing temperature in the range between 400 and 1100 °C on the structure and morphology of single-walled CNTs. The nitrogen adsorption and density functional theory calculations indicate that the fraction of end-closed CNTs increases with temperature. Raman spectroscopy reveals that the thermal treatment does not alter the tubular structure. Insight is also provided into the efficacy of CNTs filling from the molten phase, depending on the annealing temperature. The CNTs are filled with europium (III) chloride and analyzed by using electron microscopy (scanning electron microscopy and high-resolution transmission electron microscopy) and energy-dispersive X-ray spectroscopy, confirming the presence of filling and closed ends. The filling yield increases with temperature, as determined by thermogravimetric analysis. The obtained results show that the apparent surface area of CNTs, fraction of closed ends, and amount of encapsulated payload can be tailored via annealing.

14.
J Mater Chem B ; 10(1): 47-56, 2021 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-34843615

RESUMEN

Functionalized multi-walled carbon nanotubes (MWCNTs) containing radioactive salts are proposed as a potential system for radioactivity delivery. MWCNTs are loaded with isotopically enriched 152-samarium chloride (152SmCl3), the ends of the MWCNTs are sealed by high temperature treatment, and the encapsulated 152Sm is neutron activated to radioactive 153Sm. The external walls of the radioactive nanocapsules are functionalized through arylation reaction, to introduce hydrophilic chains and increase the water dispersibility of CNTs. The organ biodistribution profiles of the nanocapsules up to 24 h are assessed in naïve mice and different tumor models in vivo. By quantitative γ-counting, 153SmCl3@MWCNTs-NH2 exhibite high accumulation in organs without leakage of the internal radioactive material to the bloodstream. In the treated mice, highest uptake is detected in the lung followed by the liver and spleen. Presence of tumors in brain or lung does not increase percentage accumulation of 153SmCl3@MWCNTs-NH2 in the respective organs, suggesting the absence of the enhanced permeation and retention effect. This study presents a chemical functionalization protocol that is rapid (∼one hour) and can be applied to filled radioactive multi-walled carbon nanocapsules to improve their water dispersibility for systemic administration for their use in targeted radiotherapy.


Asunto(s)
Materiales Biocompatibles/farmacocinética , Glioma/radioterapia , Neoplasias Pulmonares/radioterapia , Melanoma/radioterapia , Nanocápsulas/química , Nanotubos de Carbono/química , Animales , Materiales Biocompatibles/administración & dosificación , Materiales Biocompatibles/química , Inyecciones Intravenosas , Neoplasias Pulmonares/secundario , Ensayo de Materiales , Ratones , Estructura Molecular , Tamaño de la Partícula , Radioisótopos , Samario , Distribución Tisular
15.
ACS Appl Mater Interfaces ; 13(41): 49232-49241, 2021 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-34609127

RESUMEN

Carbon dots are an emerging family of zero-dimensional nanocarbons behaving as tunable light harvesters and photoactivated charge donors. Coupling them to carbon nanotubes, which are well-known electron acceptors with excellent charge transport capabilities, is very promising for several applications. Here, we first devised a route to achieve the stable electrostatic binding of carbon dots to multi- or single-walled carbon nanotubes, as confirmed by several experimental observations. The photoluminescence of carbon dots is strongly quenched when they contact either semiconductive or conductive nanotubes, indicating a strong electronic coupling to both. Theoretical simulations predict a favorable energy level alignment within these complexes, suggesting a photoinduced electron transfer from dots to nanotubes, which is a process of high functional interest. Femtosecond transient absorption confirms indeed an ultrafast (<100 fs) electron transfer independent of nanotubes being conductive or semiconductive in nature, followed by a much slower back electron transfer (≈60 ps) from the nanotube to the carbon dots. The high degree of charge separation and delocalization achieved in these nanohybrids entails significant photocatalytic properties, as we demonstrate by the reduction of silver ions in solution. The results are very promising in view of using these "all-carbon" nanohybrids as efficient light harvesters for applications in artificial photocatalysis and photosynthesis.

16.
Nanomaterials (Basel) ; 10(8)2020 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-32722237

RESUMEN

The synthesis of N-containing graphene derivatives by functionalization and doping of graphene oxide (GO) has been widely reported as an alternative to tune both their chemical and physical properties. These materials are of interest for a wide range of applications, including biomedicine, sensors, energy, and catalysis, to name some. Understanding the role of the nature, reactivity, concentration, and distribution of the N-based species, would pave the way towards the design of synthetic routes to obtain improved materials for specific applications. The N-groups can be present either as aliphatic fractions (amides and amines) or becoming part of the planar conjugated lattice (N-doping). Here, we have modified the distribution of N-based moieties present in N-containing RGO samples (prepared by ammonolysis of GO) and evaluated the role of the concentration and nature of the species in the thermal stability of the materials once thermally annealed (500 °C-1050 °C) under inert environments. After these post-synthesis treatments, samples underwent marked structural modifications that include the elimination and/or transformation of N-containing fractions, which might account for the observed enhanced thermal stability. It is remarkable the formation of pyridinic N-oxide species, which role in the properties of N-containing graphene derivatives has been barely reported. The presence of this fraction is found to confer an enhanced thermal stability to the material.

17.
J Colloid Interface Sci ; 566: 107-119, 2020 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-32000088

RESUMEN

Reduced graphene oxide (RGO) decorated with superparamagnetic iron oxide nanoparticles (SPION) is a novel composite nanomaterial with a myriad of promising applications. However, processes such as the fast and simple synthesis of non-agglomerated monodispersed SPION on RGO and the accurate characterization of particle size distributions remain challenging. Here we present how to solve these two problems. Firstly, we introduce a new microwave-assisted synthesis of stabilized SPION on RGO which is fast, simple and up-scalable but at the same time renders well dispersed SPION with narrow size distributions. The coverage of the RGO flakes with SPION is extensively tuned and the results are compared with a non-stabilized microwave-assisted method. Secondly, we implement an accurate method for the determination of particle size distributions from magnetization curves in RGO-SPION composite nanomaterials. This method is applied to the prepared composites with different particle size distributions, degrees of particle agglomeration and coverage of the RGO flakes. The influence of sample characteristics in the size determination method is discussed and the results are compared with the values obtained from transmission electron microscopy (TEM) and X-ray diffraction (XRD), showing that the method is well suited for these and potentially other types of superparamagnetic composite nanomaterials.

18.
Carbohydr Polym ; 230: 115598, 2020 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-31887938

RESUMEN

We present a novel method for processing bacterial cellulose/graphene oxide (BC/GO) aerogels with multifunctional properties. The addition of a small amount of dimethyl sulfoxide (DMSO) to the aqueous dispersion of the nanomaterials during the gelification process affected the water freezing temperature of the system and thereby affecting the porous structure of the aerogel obtained after liophilization. The possibility to obtain small and elongated pore with axial orientation allowed a significant improvement of the structural stability of the aerogels. Moreover, the aerogels reduction by thermal treatment with ammonia gas induced crosslinking between the different nanophases, thus given an incremental factor for the mechanical performance of the aerogels under harsh conditions. The resulting aerogels also showed significant improvements in terms of thermal stability and electrical conductivity. These multifunctional BC/GO aerogels present high potential as sustainable and ecological alternative materials for lightweight packaging, filters for atmosphere and water treatment, or energy applications.


Asunto(s)
Celulosa/análogos & derivados , Grafito/química , Amoníaco/química , Reactivos de Enlaces Cruzados/química , Dimetilsulfóxido/química , Conductividad Eléctrica , Geles/química , Calor , Oxidación-Reducción , Porosidad
19.
ACS Nano ; 14(1): 129-141, 2020 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-31742990

RESUMEN

Radiation therapy along with chemotherapy and surgery remain the main cancer treatments. Radiotherapy can be applied to patients externally (external beam radiotherapy) or internally (brachytherapy and radioisotope therapy). Previously, nanoencapsulation of radioactive crystals within carbon nanotubes, followed by end-closing, resulted in the formation of nanocapsules that allowed ultrasensitive imaging in healthy mice. Herein we report on the preparation of nanocapsules initially sealing "cold" isotopically enriched samarium (152Sm), which can then be activated on demand to their "hot" radioactive form (153Sm) by neutron irradiation. The use of "cold" isotopes avoids the need for radioactive facilities during the preparation of the nanocapsules, reduces radiation exposure to personnel, prevents the generation of nuclear waste, and evades the time constraints imposed by the decay of radionuclides. A very high specific radioactivity is achieved by neutron irradiation (up to 11.37 GBq/mg), making the "hot" nanocapsules useful not only for in vivo imaging but also therapeutically effective against lung cancer metastases after intravenous injection. The high in vivo stability of the radioactive payload, selective toxicity to cancerous tissues, and the elegant preparation method offer a paradigm for application of nanomaterials in radiotherapy.


Asunto(s)
Carbono/química , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/radioterapia , Nanocápsulas/química , Neutrones , Samario/química , Animales , Femenino , Ratones , Ratones Endogámicos C57BL , Tamaño de la Partícula , Propiedades de Superficie
20.
Nanotechnology ; 20(10): 105703, 2009 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-19417531

RESUMEN

Uniform zinc oxide coated single-walled nanotubes (SWNTs) were fabricated by ultrasonic irradiation with acid-treated SWNTs, zinc acetate, and triethanolamine at low temperature in aqueous phase processing. The ZnO coating process did not decrease the dark current of the SWNTs, but a real decrease in the steady state negative photocurrent was observed after ZnO coating, suggesting a clear photosensitization effect. Transport measurements reveal that the negative photocurrent in s (semiconducting)-SWNTs@ZnO could be described by electron-hole compensation behavior attributed to the ZnO layer under ultraviolet excitation. This simple coating method for one-dimensional material can open up new possibilities for multifunctional nanodevices.


Asunto(s)
Nanoestructuras/química , Nanoestructuras/efectos de la radiación , Nanotecnología/métodos , Nanotubos de Carbono/química , Óxido de Zinc/química , Conductividad Eléctrica , Transporte de Electrón/efectos de la radiación , Luz , Ensayo de Materiales , Nanotubos de Carbono/efectos de la radiación , Tamaño de la Partícula , Semiconductores , Óxido de Zinc/efectos de la radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA