Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
J Invertebr Pathol ; 203: 108070, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38311231

RESUMEN

Consistent efficacy is required for entomopathogenic nematodes to gain wider adoption as biocontrol agents. Recently, we demonstrated that when exposed to nematode pheromone blends, entomopathogenic nematodes showed increased dispersal, infectivity, and efficacy under laboratory and greenhouse conditions. Prior to this study, the impact of entomopathogenic nematode-pheromone combinations on field efficacy had yet to be studied. Steinernema feltiae is a commercially available entomopathogenic nematode that has been shown to increase mortality in insect pests such as the pecan weevil Curculio caryae. In this study, the pecan weevil was used as a model system to evaluate changes in S. feltiae efficacy when treated with a partially purified ascaroside pheromone blend. Following exposure to the pheromone blend, the efficacy of S. feltiae significantly increased as measured with decreased C. caryae survival despite unfavorable environmental conditions. The results of this study highlight a potential new avenue for using entomopathogenic nematodes in field conditions. With increased efficacy, using entomopathogenic nematodes will reduce reliance on conventional management methods in pecan production, translating into more environmentally acceptable practices.


Asunto(s)
Carya , Rabdítidos , Gorgojos , Animales , Feromonas/farmacología , Control Biológico de Vectores/métodos
2.
J Invertebr Pathol ; 196: 107851, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36400242

RESUMEN

Entomopathogenic nematodes (EPNs) are susceptible to abiotic environmental factors including ultraviolet (UV) radiation, which affects the survival and efficacy. This study evaluated nanoparticle (NP) formulations for protecting Steinernema carpocapsae infective juveniles (IJs) from UV radiation. First, silica-NH2 NPs at oil-to-water ratios of 2:8, 3:7 and 4:6 were compared with Barricade Fire Gel (1 % and 2 %) and a water control (aqueous IJs) by exposing IJs to UV light (254 nm) for 0, 10 and 20 min. Barricade gel (especially 2 % Barricade) significantly improved IJs viability after UV treatment, while all three NPs had adverse effects on IJ viability after UV radiation. Subsequently, two silica (SiO2 basic and advanced) and one titania (TiO2) based formulations were tested with Barricade (1 % and 2 %) and a water control. The titania-NH2 NPs provided the highest UV protection, and IJ viability and virulence were not reduced even after 20-min UV. Except TiO2, only 2 % Barricade at 10-min UV and SiO2 basic at 20-min UV had lower IJ mortality than the water control. Only TiO2 formulated IJs caused higher insect mortality and infection levels than aqueous IJs after UV treatment. The UV tolerance of TiO2 was further examined by assessing the number of nematodes invading the hosts. Consistent with virulence tests, the number of invading nematodes in titania-NH2 NPs did not decrease after UV radiation for 10 or 20 min compared with the no-UV control. The anti-UV capability of titania-NH2 NPs has promise as a tool to enhance biocontrol efficacy of EPNs under field conditions.


Asunto(s)
Rabdítidos , Rayos Ultravioleta , Animales , Dióxido de Silicio , Control Biológico de Vectores , Agua
3.
J Invertebr Pathol ; 194: 107806, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35944664

RESUMEN

Toxicity of the metabolites of two bacteria, Photorhabdus luminescens and Xenorhabdus bovienii, symbionts of entomopathogenic nematodes, were tested in the laboratory against the multicolored Asian lady beetle, Harmonia axyridis, the black pecan aphid, Melanocallis caryaefoliae, and the blackmargined aphid, Monellia caryella. Bacterial broth prepared from both P. luminescens and X. bovienii demonstrated high levels of toxicity equivalent to the pyrethroid insecticide bifenthrin and caused higher insect mortality than tryptic soy broth plus yeast extract (TSY) (blank control) against M. caryella; broth culture of P. luminescens was more effective than TSY against M. caryaefoliae. At the levels tested, the metabolites were not toxic to H. axyridis.


Asunto(s)
Áfidos , Carya , Escarabajos , Insecticidas , Photorhabdus , Piretrinas , Xenorhabdus , Animales
4.
J Invertebr Pathol ; 184: 107655, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34411606

RESUMEN

The pupal soil cell of the pecan weevil, Curculio caryae (Coleoptera: Curculionidae), was reported previously to exhibit antibiosis to an entomopathogenic fungus, Beauveria bassiana. The objectives of this study were to examine 1) if the antimicrobial effect occurs in other insects that form pupal cells, 2) whether the effect extends to plant pathogenic fungi, and 3) identify the source of antibiosis in pupal soil cells of C. caryae. Antibiosis of pupal cells against B. bassiana was confirmed in-vitro in three additional curculionids, Diaprepes abbreviatus, Conotrachelus nenuphar, and Pissodes nemorensis, all of which had fewer fungal colonies relative to controls. Pupal soil cells were found to suppress phytopathogenic fungi in-vitro, including suppression of Alternaria solani by D. abbreviatus pupal cell, and that of Monilinia fructicola by C. caryae. The detection of antibiosis of soil cells formed by surface-sterilized insects using sterile soil implies the antimicrobial effect stemmed from inside the insect. Further, a novel biotic mechanism was identified: a bacterium related to Serratia nematodiphila was isolated from C. caryae pupal soil cells and was found to be associated with antibiosis. The bacterial cultures with or without autoclave had similar effects but were not as potent as pupal soil cells for suppressing B. bassiana. Also, autoclaved soil cells and autoclaved bacterial culture suppressed M. fructicola but were not as inhibitory as non-autoclaved soil cells. This indicates that antibiosis may be due to bacterial metabolites, although other factors may also be involved. Our findings suggest potential to develop the antibiotic compounds as novel bio-fungicides to control plant diseases.


Asunto(s)
Antibiosis , Beauveria/efectos de los fármacos , Enfermedades de las Plantas/prevención & control , Serratia/fisiología , Microbiología del Suelo , Gorgojos/microbiología , Animales , Fungicidas Industriales/química , Pupa/crecimiento & desarrollo , Pupa/microbiología , Serratia/química , Especificidad de la Especie , Gorgojos/crecimiento & desarrollo
5.
J Therm Biol ; 78: 92-99, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30509672

RESUMEN

Drosophila suzukii Matsumura (Diptera: Drosophilidae) is an invasive vinegar fly of Asian origin now distributed throughout North America. Due to the unique morphology of females, this fly has become one of the most serious pests of thin-skinned fruits including blueberry, blackberry, cherry, raspberry, and strawberry. Prophylactic insecticide applications are commonly used to control this fly. A more sustainable approach to managing this invasive pest may not be possible without a clear understanding of the biology of this species under extreme environmental conditions. Specifically, high temperature is known to interfere with development and reproduction of drosophilids; however, the impact of high temperature on D. suzukii needs to be further investigated. The objective of the present study was to investigate the impact of exposure to constant and relatively short-term heat stress on reproductive success of D. suzukii, and potential for recovery. Results show that the development and reproduction of D. suzukii were negatively affected by constant and relatively short-term heat stress. Under constant heat stress, oviposition rate and adult lifespan decreased as temperature increased from 24 °C to 33 °C and reproduction was completely absent at 33 °C. Under relatively short-term heat stress, oviposition, pupation, and adult eclosion were significantly decreased as temperature increased from 28 °C to 34 °C. The short-term heat stress greatly reduced the fertility of both male and female D. suzukii which was recovered eight days after treatment. This study provides basic information on thermal biology of D. suzukii to help us better understand the trends commonly observed in D. suzukii trap captures in regions with hot summer conditions, and the results can be used in population models to predict its population dynamics in regions where high temperatures prevail during the field season.


Asunto(s)
Drosophila/fisiología , Fertilidad , Respuesta al Choque Térmico , Oviposición , Animales , Drosophila/crecimiento & desarrollo , Femenino , Longevidad , Masculino
6.
Entomol Exp Appl ; 162(1): 19-29, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30046183

RESUMEN

Feeding damage to seedling cotton and peanut inflicted by adult and immature thrips may result in stunted growth and delayed maturity. Furthermore, adult thrips can transmit Tomato spotted wilt virus (TSWV) to seedling peanut, which reduces plant growth and yield. The objective of this research was to assess the efficacy of inert particle films, calcium carbonate or kaolin, in combination with conservation tillage, to reduce adult and immature thrips counts in cotton and peanut crops. Planting cotton or peanut into strip tillage utilizing a rolled rye winter cover crop significantly reduced immature thrips counts. Furthermore, plant damage ratings in cotton as well as TSWV incidence in peanut significantly decreased under conservation tillage. Aboveground cotton biomass and plant stand in cotton and peanut were unaffected by calcium carbonate or kaolin particle film applications. Within each week, immature thrips counts were unaffected by particle films, regardless of application rate. In cotton plots treated with kaolin, total Frankliniella fusca (Hinds) (Thysanoptera: Thripidae) counts summed across weeks were significantly greater compared to the untreated control. For adult F. fusca counts at 3 weeks after planting, an interaction between tillage and particle film treatments was observed with fewer adult thrips in particle film and strip tillage treated peanut. Similarly, reduced TSWV incidence was observed in particle film-treated peanut grown using conservation tillage. Neither cotton nor peanut yields were affected by particle film treatments.

7.
J Insect Sci ; 152015.
Artículo en Inglés | MEDLINE | ID: mdl-25843577

RESUMEN

A 3-yr study (2009-2011) was conducted to examine the spatial and temporal dynamics of stink bugs in three commercial farmscapes. Study locations were replicated in South Carolina and Georgia, in an agriculturally diverse region known as the southeastern coastal plain. Crops included wheat, Triticum aestivum (L.), corn, Zea mays (L.), soybean, Glycine max (L.), cotton, Gossypium hirsutum (L.), and peanut, Arachis hypogaea (L.). Farmscapes were sampled weekly using whole-plant examinations for corn, with all other crops sampled using sweep nets. The predominant pest species of phytophagous stink bugs were the brown stink bug, Euschistus servus (Say), the green stink bug, Chinavia hilaris (Say), and the southern green stink bug, Nezara viridula (L.). Chi-square tests indicated a departure from a normal distribution in 77% of analyses of the variance to mean ratio, with 37% of slopes of Taylor's power law and 30% of coefficient ß of Iwao's patchiness regression significantly greater than one, indicating aggregated distributions. Spatial Analyses by Distance IndicEs (SADIE) indicated aggregated patterns of stink bugs in 18% of year-end totals and 42% of weekly counts, with 80% of adults and nymphs positively associated using the SADIE association tool. Maximum stink bug densities in each crop occurred when the plants were producing fruit. Stink bugs exhibited greater densities in crops adjacent to soybean in Barnwell and Lee Counties compared with crops adjacent to corn or fallow areas. The diversity of crops and relatively small size of fields in the Southeast leads to colonization of patches within a farmscape. The ecological and management implications of the spatial and temporal distribution of stink bugs within farmscapes are discussed.


Asunto(s)
Distribución Animal , Hemípteros/fisiología , Agricultura , Animales , Cadena Alimentaria , Georgia , Hemípteros/crecimiento & desarrollo , Ninfa/crecimiento & desarrollo , Ninfa/fisiología , Dinámica Poblacional , Estaciones del Año , South Carolina
8.
J Econ Entomol ; 107(2): 646-53, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24772545

RESUMEN

Phytophagous stink bugs are economically important pests of annual and perennial crops in the southeastern United States. Because of insecticide resistance and risk of secondary pest outbreaks, there is interest in identifying cultural practices that could lead to reduced insecticide applications. The objective of this project was to assess the importance of cotton planting date on stink bug damage to cotton. Unsprayed cotton plots with biweekly planting dates were established at three locations in southern Georgia in each of two crop years. During the bloom cycle, stink bug-induced boll injury was estimated weekly in each plot. Plots were subsequently defoliated, mechanically harvested, and ginned to assess differences in fiber yield and quality attributable to stink bug injury. Results show that the rate of boll damage generally increased more rapidly through the bloom cycle for planting dates in June compared with May. Similarly, estimates of boll damage from June-planted cotton more frequently exceeded the stink bug treatment threshold compared with May-planted cotton. In 2011, mean lint yield and economic returns from May planting dates were significantly greater than June planting dates. In 2012, lint yield and economic returns were greater in plots established in early May compared with later planting dates. Estimates of HVI color + b, a measure of fiber yellowness, were lower in early May-planted cotton compared with June planting. These data show that growers need to be aware of increased stink bug damage potential when planting late.


Asunto(s)
Agricultura/economía , Cadena Alimentaria , Gossypium/crecimiento & desarrollo , Heterópteros/fisiología , Animales , Productos Agrícolas/economía , Georgia , Gossypium/fisiología , Control de Insectos , Insecticidas , Distribución Aleatoria , Estaciones del Año
9.
Pest Manag Sci ; 80(3): 1008-1015, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37831545

RESUMEN

BACKGROUND: Rising global temperatures are associated with emerging insect pests, reflecting earlier and longer insect activity, faster development, more generations per year and changing species' ranges. Insecticides are often the first tools available to manage these new threats. In the southeastern US, sweet potato whitefly (Bemisia tabaci) has recently become the major threat to vegetable production. We used data from a multi-year, regional whitefly monitoring network to search for climate, land use, and management correlates of whitefly activity. RESULTS: Strikingly, whiteflies were detected earlier and grew more abundant in landscapes with greater insecticide use, but only when temperatures were also relatively warm. Whitefly outbreaks in hotter conditions were not associated with specific active ingredients used to suppress whiteflies, which would be consistent with a regional disruption of biocontrol following sprays for other pests. In addition, peak whitefly detections occurred earlier in areas with more vegetable production, but later with more cotton production, consistent with whiteflies moving among crops. CONCLUSION: Altogether, our findings suggest possible links between warmer temperatures, more abundant pests, and frequent insecticide applications disrupting biological control, though this remains to be explicitly demonstrated. Climate-initiated pesticide treadmills of this type may become an increasingly common driver of emerging pest outbreaks as global change accelerates. © 2023 Society of Chemical Industry.


Asunto(s)
Hemípteros , Insecticidas , Animales , Temperatura , Insectos , Productos Agrícolas , Verduras
10.
J Fungi (Basel) ; 9(8)2023 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-37623598

RESUMEN

Previously, Cordyceps javanica Wf GA17, a causing agent of whitefly epizootics in southern Georgia, demonstrated superior temperature tolerance and higher virulence against the whitefly Bemisia tabaci than commercial strains in the laboratory. The post-application persistence and efficacy of this fungus against B. tabaci were compared with that of the commercially available C. javanica Apopka97 strain over a two-year field study in cotton and vegetable crops. When blastospores of both strains were applied alone, whitefly populations were not effectively suppressed. Thus, JMS stylet oil was added to fungal treatments for enhancing efficacy and persistence. For 0-day samples, all fungal treatments caused similar but significant levels of immature mortality regardless of fungal strain, propagule form (conidia vs. blastospores), and application method (alone or mixed with JMS). In follow-up samplings, Wf GA17 blastospores + JMS achieved higher control levels than other treatments in some trials, but the efficacy did not last long. The JMS oil alone caused significant mortality and suppressed whiteflies. Over 90% of spores lost viability 24 h after treatment in all fungal treatments. Across evaluation times, there was no difference between the two fungal strains (conidia or blastospores, alone or combined with JMS), but conidia persisted better than blastospores for both strains. Overall, the field persistence and efficacy of C. javanica did not last long; therefore, improved delivery methods and formulations are needed for enhancement.

11.
Insects ; 14(4)2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-37103191

RESUMEN

The present study evaluated insecticide resistance in field populations of onion thrips, Thrips tabaci Lindeman (Thysanoptera: Thripidae), collected from eight different onion-growing regions of Punjab, Pakistan. These field-collected populations were assessed for resistance development against eight commonly used active ingredients including deltamethrin, lambda-cyhalothrin, imidacloprid, acetamiprid, spinosad, spinetoram, cypermethrin, and abamectin. In leaf dip bioassays, T. tabaci adults showed varied levels of resistance towards different insecticides. Moderate or high levels of resistance to deltamethrin (58-86 fold), lambda-cyhalothrin (20-63 fold), and cypermethrin (22-54 fold) were observed in T. tabaci field populations. There were very low to moderate resistance levels to imidacloprid (10-38 fold), acetamiprid (5-29 fold), and abamectin (10-30 fold). The lowest levels of resistance were detected in thrips exposed to spinosad (3-13 fold) and spinetoram (3-8 fold). Insecticide resistance levels varied among populations collected from various geographic locations, but all populations exhibited elevated levels of resistance to deltamethrin. Thrips tabaci populations with higher resistance levels were most commonly found from the southern part of Punjab, Pakistan. Our findings revealed that spinosyns could be used as alternatives to conventional insecticides for the successful management of T. tabaci in onion fields.

12.
Pest Manag Sci ; 78(7): 2779-2791, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35365867

RESUMEN

BACKGROUND: The peach fruit fly, Bactrocera zonata, and the Oriental fruit fly, B. dorsalis (Diptera: Tephritidae), are economically important fruit fly species in various regions of the world. We evaluated the effects of separate and combined applications of the entomopathogenic fungi (EPF) Beauveria bassiana (WG-18) and Metarhizium anisopliae (WG-02), and the entomopathogenic nematodes (EPNs) Heterorhabditis bacteriophora (VS strain) and Steinernema carpocapsae (ALL strain) against larvae, pupae and pharate adults, of B. zonata and B. dorsalis under laboratory, glasshouse and field cage conditions. RESULTS: Combined applications of EPF and EPNs produced greater mortality than individual treatments under all conditions. Against both species, the combination of B. bassiana and H. bacteriophora consistently exerted strong effects that were similar to the combined application of B. bassiana and S. carpocapsae whereas M. anisopliae applied with S. carpocapsae was least effective in all combinations. In a laboratory bioassay, synergistic interactions were detected between B. bassiana and H. bacteriophora applied against larvae and pharate adults of both fly species, between B. bassiana and S. carpocapsae against larvae of both species and pharate adults of B. zonata, and between M. anisopliae and H. bacteriophora against B. zonata larvae. Other combined treatments resulted in additive effects, especially against fly pupae. In a potted soil bioassay, there were only additive interactions in all combinations against different stages of both flies. The 3rd instar of both flies was more susceptible than pharate adult and pupal stages. Additive interactions between EPNs and EPF were detected in the glasshouse against 3rd instars and pupae, and under field conditions against 3rd instars of both fly species. CONCLUSION: These results indicate how particular combinations of entomopathogenic fungi and nematodes could be deployed in integrated pest management of tephritid fruit flies in orchard agro-ecosystems. © 2022 Society of Chemical Industry.


Asunto(s)
Metarhizium , Rabdítidos , Tephritidae , Animales , Drosophila , Ecosistema , Larva , Control Biológico de Vectores/métodos , Pupa
13.
J Econ Entomol ; 115(2): 455-461, 2022 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-35089346

RESUMEN

A newly discovered entomopathogenic fungus Cordyceps javanica (Friedrichs & Bally) Samson & Hywel-Jones (Hypocreales: Cordycipitaceae) strain Wf GA17 was compared with the commercial Cordyceps fumosorosea Wize (Hypocreales: Cordycipitaceae) Apopka 97 strain for liquid-culture production, formulation, insecticidal efficacy, and storage stability under laboratory conditions. We compared culture media with carbon:nitrogen (C:N) ratios of 10:1, 30:1, and 50:1 for these two isolates. A third strain, C. fumosorosea strain ARSEF 3581, had previously been optimized for liquid-culture production of blastospores at 10:1 C:N served as an added control. These seven cultures were processed by spray drying with skim milk powder, stored at 25oC to evaluate storage stability, and assayed for insecticidal activity against Trichoplusia ni (Hübner) (Lepidoptera: Noctuidae) neonates. Final blastospore concentrations were not significantly different among cultures, ranging from 4.47 to 9.88 × 108 spores/ml. Fungal biomass decreased and final glucose concentrations increased with increasing C:N ratios, indicating better fungal growth with higher nitrogen concentrations. Product yields from the spray dryer (grams per liter culture) increased with increased C:N ratios while spore concentrations decreased, ranging from 2.27 to 7.17 × 109 spores/g. There were no significant differences for insecticidal efficacy among the seven treatments. Spores produced in 10:1 C:N ratio media retained viability longer than spores produced in other media. Cost of ingredients decreased with increasing C:N ratios, such that the 30:1 media may yield the most economical product. The raw material cost needed for application was 1.4× greater for Wf GA17 compared with Apopka 97, a difference that could be erased by optimization of culture conditions.


Asunto(s)
Cordyceps , Hypocreales , Insecticidas , Animales , Medios de Cultivo , Nitrógeno , Control Biológico de Vectores , Esporas Fúngicas
14.
Front Plant Sci ; 13: 1006225, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36186020

RESUMEN

The invasive Melanaphis sorghi (Theobald; =Melanaphis sacchari Zehntner) is a serious pest of sorghum production in the southern USA. Demonstration of technologies that provide effective control is key to management of this pest. Here, we investigated the effect of host plant resistance (resistant cultivar: DKS37-07 and susceptible cultivar: DKS53-53) and a single foliar insecticide (flupyradifurone: Sivanto Prime) application on M. sorghi infestations and the role of natural enemy populations in grain sorghum production across five locations in four states in southeastern USA. Foliar insecticide application significantly suppressed M. sorghi infestations on both the resistant and susceptible sorghum cultivars across all locations. Planting the host plant resistant cultivar (DKS37-07) significantly reduced aphid infestation across all locations. Plant damage ratings did not vary widely, but there was generally a positive association between aphid counts and observed plant damage, suggesting that increasing aphid numbers resulted in corresponding increase in plant damage. Planting a host plant resistant cultivar and foliar insecticide application generally preserved grain yield. Both sorghum hybrids supported an array of different life stages of natural enemies (predators [lady beetle larvae and adults; hoverfly larvae and lacewing larvae] and parasitoids [a braconid and aphelinid]) for both the sprayed and non-sprayed treatments. We found a strong and significant positive relationship between the natural enemies and the M. sorghi infestation. Results suggest that planting a host plant resistant cultivar and the integration of natural enemies with insecticide control methods in the management of M. sorghi is central to the development of an effective pest management strategy against this invasive pest.

15.
Insects ; 13(11)2022 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-36354863

RESUMEN

Studies on the management of the invasive Melanaphis sorghi are essential to refining integrated pest management strategies against M. sorghi in forage sorghum in the USA. The objective of this study was to determine the impact of planting date (early planting and late planting) and in-furrow and foliar insecticide application of flupyradifurone, on M. sorghi infestation and forage sorghum yield in Tifton, Georgia and Florence, South Carolina, USA, in 2020 and 2021. Early planted sorghum supported slightly higher aphid density and severity of infestation as evident in the greater cumulative insect days values in the early planted sorghum at both Florence and Tifton in 2020 and 2021. A single foliar application reduced aphid infestations below the threshold level of 50 aphids per leaf. In contrast, in-furrow insecticidal application in selected plots at both locations significantly suppressed M. sorghi density to near-zero levels. Yield results in Florence in 2020 showed that sorghum yield was over 50% greater in early planted plots compared to late planted plots. Both insecticide treatments (foliar and in-furrow) resulted in significantly higher yield than untreated plots. These data indicate that early planting coupled with in-furrow and foliar insecticide applications can suppress M. sorghi infestations and improve silage production in forage sorghum in the USA.

16.
Pest Manag Sci ; 78(11): 4929-4938, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36054536

RESUMEN

BACKGROUND: Invasive species threaten the productivity and stability of natural and managed ecosystems. Predicting the spread of invaders, which can aid in early mitigation efforts, is a major challenge, especially in the face of climate change. While ecological niche models are effective tools to assess habitat suitability for invaders, such models have rarely been created for invasive pest species with rapidly expanding ranges. Here, we leveraged a national monitoring effort from 543 sites over 3 years to assess factors mediating the occurrence and abundance of brown marmorated stink bug (BMSB, Halyomorpha halys), an invasive insect pest that has readily established throughout much of the United States. RESULTS: We used maximum entropy models to estimate the suitable habitat of BMSB under several climate scenarios, and generalized boosted models to assess environmental factors that regulated BMSB abundance. Our models captured BMSB distribution and abundance with high accuracy, and predicted a 70% increase in suitable habitat under future climate scenarios. However, environmental factors that mediated the geographical distribution of BMSB were different from those driving abundance. While BMSB occurrence was most affected by winter precipitation and proximity to populated areas, BMSB abundance was influenced most strongly by evapotranspiration and solar photoperiod. CONCLUSION: Our results suggest that linking models of establishment (occurrence) and population dynamics (abundance) offers a more effective way to forecast the spread and impact of BMSB and other invasive species than simply occurrence-based models, allowing for targeted mitigation efforts. Implications of distribution shifts under climate change are discussed. © 2022 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Asunto(s)
Ecosistema , Heterópteros , Animales , Cambio Climático , Especies Introducidas , Dinámica Poblacional , Estados Unidos
17.
Insects ; 12(6)2021 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-34207995

RESUMEN

A sizable proportion (about 8%) of the world population is facing food insecurity [...].

18.
Environ Entomol ; 50(5): 1127-1136, 2021 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-34169323

RESUMEN

A new strain of the entomopathogenic fungus, identified as Cordyceps javanica (Frieder. & Bally) Kepler, B. Shrestha & Spatafora (Hypocreales: Cordycipitaceae) wf GA17, was found naturally infecting the sweetpotato whitefly, Bemisia tabaci (Gennadius) MEAM1 in southern Georgia, US, in September 2017. The fungus was tested for pathogenicity and virulence in comparison with commercially available entomopathogenic fungal strains against several insect species in the laboratory. In specific, it was compared with Cordyceps fumosorosea (Wize) Kepler, B. Shrestha & Spatafora (Hypocreales: Cordycipitaceae) Apopka 97, Beauveria bassiana (Bals.-Criv.) Vuill. (Hypocreales: Cordycipitaceae) strain GHA, and Metarhizium brunneum Petch (Hypocreales: Clavicipitaceae) strain F52 for virulence against B. tabaci (4th instars) and cotton aphid, Aphis gossypii Glover (Hemiptera: Aphididae) (4th instars with or without wingbuds), on leaf-discs, and against last instars of pecan weevil Curculio caryae (Horn) (Coleoptera: Curculionidae) and citrus root weevil Diaprepes abbreviatus (L.) (Coleoptera: Curculionidae) in soil cups. Against B. tabaci, C. javanica exhibited higher mortality and mycosis development at 5 d post inoculation than other fungi. In assays against A. gossypii with and without wingbuds, C. javanica and C. fumosorosea had the highest mortality and mycosis levels and B. bassiana had the lowest; nymphs with wingbuds were more susceptible to some fungal infection than those without. Against C. caryae, B. bassiana was more effective than other fungi. For D. abbreviatus, B. bassiana also caused the highest mortality while M. brunneum had the lowest, with Cordyceps spp. being intermediate. Overall, the findings suggest high potential of the new strain, C. javanica wf GA17, for managing whiteflies and aphids, while it was not as effective as B. bassiana against the curculionids.


Asunto(s)
Áfidos , Beauveria , Hemípteros , Animales , Cordyceps , Metarhizium , Control Biológico de Vectores , Virulencia
19.
Microorganisms ; 9(8)2021 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-34442870

RESUMEN

Fruit flies including Bactrocera zonata and B. dorsalis (Diptera: Tephritidae) are considered major pests of orchard systems in Pakistan. This study evaluated the laboratory virulence, sub-lethal effects, horizontal transmission, greenhouse, and field-cage efficacy of locally isolated entomopathogenic fungi (EPF) against B. zonata and B. dorsalis. In virulence assays against third instars and adults, all 21 EPF isolates (Beauveria bassiana and Metarhizium anisopliae) tested were pathogenic and caused varying levels of mortality to the fruit flies. Based on the initial screening, four isolates (B. bassiana WG-21 and WG-18 and M. anisopliae WG-07 and WG-02) were selected for further study. The isolate WG-18 was the most virulent against larvae and adults of B. zonata and B. dorsalis followed by WG-21, WG-02, and WG-07. In both species, adults were more susceptible than larvae to all isolates, and pupae were the least susceptible. Isolates WG-18 and WG-21 strongly decreased female fecundity and fertility, the highest adult and larval mortality, and longest developmental time of larvae and pupae. Fungal conidia were disseminated passively from infected to healthy adults and induced significant mortality, particularly from infected males to non-infected females. In greenhouse and field-cage experiments, WG-18 and WG-21 were the most effective isolates in reducing adult emergence when applied to larvae and pupae of both fruit fly species. Our results indicate that B. bassiana isolates WG-18 and WG-21 were the most virulent against multiple life stages of B. zonata and B. dorsalis, and also exerted the strongest sub-lethal effects.

20.
J Econ Entomol ; 103(3): 991-1001, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20568648

RESUMEN

Data from long-term Tribolium castaneum (Herbst) pheromone trapping programs in two flour mills was used to evaluate the impact of structural fumigations (n = 23) on pest populations. The two mills differed in mean number of beetles captured and proportion of traps with captures of one or more beetles, but in one of the mills the mean number of beetles captured was reduced after implementing a more intensive integrated pest management program. Mean number of beetles per trap and proportion of traps with captures increased by 52.7 +/- 8.2 and 24.8 +/- 4.7% from one monitoring period to the next but decreased by 84.6 +/- 4.6 and 71.0 +/- 5.1% when fumigation occurred between periods, respectively. Mean number of beetles per trap and proportion of traps with captures immediately after fumigation were both positively correlated with number captured per trap and proportion of traps with captures in the monitoring period immediately before fumigation. Mean daily air temperature inside the mill fluctuated with the season, and although always warmer than the outside temperature, the relative difference varied with season. Relationship between inside and outside temperature could be explained well by an exponential equation with the parameters a = 20.43, b = 2.25, and c = -15.24 (r2 = 0.6983, which is 94% of the maximum r2 obtainable). Although outside temperature differed between spring and fall fumigations, inside temperature and reduction in beetle captures was not affected by season. A better understanding of pest populations and the impact of structural treatments within commercial food facilities is critical for improving the management of pest populations and for the adoption of methyl bromide alternatives.


Asunto(s)
Harina , Fumigación , Tribolium , Animales , Dinámica Poblacional , Estaciones del Año , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA