Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Am J Hum Genet ; 111(3): 529-543, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38387458

RESUMEN

The Rab family of guanosine triphosphatases (GTPases) includes key regulators of intracellular transport and membrane trafficking targeting specific steps in exocytic, endocytic, and recycling pathways. DENND5B (Rab6-interacting Protein 1B-like protein, R6IP1B) is the longest isoform of DENND5, an evolutionarily conserved DENN domain-containing guanine nucleotide exchange factor (GEF) that is highly expressed in the brain. Through exome sequencing and international matchmaking platforms, we identified five de novo variants in DENND5B in a cohort of five unrelated individuals with neurodevelopmental phenotypes featuring cognitive impairment, dysmorphism, abnormal behavior, variable epilepsy, white matter abnormalities, and cortical gyration defects. We used biochemical assays and confocal microscopy to assess the impact of DENND5B variants on protein accumulation and distribution. Then, exploiting fluorescent lipid cargoes coupled to high-content imaging and analysis in living cells, we investigated whether DENND5B variants affected the dynamics of vesicle-mediated intracellular transport of specific cargoes. We further generated an in silico model to investigate the consequences of DENND5B variants on the DENND5B-RAB39A interaction. Biochemical analysis showed decreased protein levels of DENND5B mutants in various cell types. Functional investigation of DENND5B variants revealed defective intracellular vesicle trafficking, with significant impairment of lipid uptake and distribution. Although none of the variants affected the DENND5B-RAB39A interface, all were predicted to disrupt protein folding. Overall, our findings indicate that DENND5B variants perturb intracellular membrane trafficking pathways and cause a complex neurodevelopmental syndrome with variable epilepsy and white matter involvement.


Asunto(s)
Epilepsia , Discapacidad Intelectual , Trastornos del Neurodesarrollo , Humanos , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/metabolismo , Encéfalo/metabolismo , Epilepsia/genética , Epilepsia/metabolismo , Factores de Intercambio de Guanina Nucleótido/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo , Lípidos , Discapacidad Intelectual/genética , Discapacidad Intelectual/metabolismo , Proteínas de Unión al GTP rab/metabolismo
2.
Int J Mol Sci ; 25(4)2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38396982

RESUMEN

Cystic fibrosis (CF) is a genetic disorder caused by mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR), a selective anion channel expressed in the epithelium of various organs. The most frequent mutation is F508del. This mutation leads to a misfolded CFTR protein quickly degraded via ubiquitination in the endoplasmic reticulum. Although preventing ubiquitination stabilizes the protein, functionality is not restored due to impaired plasma membrane transport. However, inhibiting the ubiquitination process can improve the effectiveness of correctors which act as chemical chaperones, facilitating F508del CFTR trafficking to the plasma membrane. Previous studies indicate a crosstalk between SUMOylation and ubiquitination in the regulation of CFTR. In this study, we investigated the potential of inhibiting SUMOylation to increase the effects of correctors and enhance the rescue of the F508del mutant across various cell models. In the widely used CFBE41o-cell line expressing F508del-CFTR, inhibiting SUMOylation substantially boosted F508del expression, thereby increasing the efficacy of correctors. Interestingly, this outcome did not result from enhanced stability of the mutant channel, but rather from augmented cytomegalovirus (CMV) promoter-mediated gene expression of F508del-CFTR. Notably, CFTR regulated by endogenous promoters in multiple cell lines or patient cells was not influenced by SUMOylation inhibitors.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística , Fibrosis Quística , Sumoilación , Humanos , Fibrosis Quística/tratamiento farmacológico , Fibrosis Quística/genética , Fibrosis Quística/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Citomegalovirus , Mutación , Sumoilación/efectos de los fármacos , Regiones Promotoras Genéticas/efectos de los fármacos
3.
Cell Mol Life Sci ; 79(4): 192, 2022 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-35292885

RESUMEN

The advent of Trikafta (Kaftrio in Europe) (a triple-combination therapy based on two correctors-elexacaftor/tezacaftor-and the potentiator ivacaftor) has represented a revolution for the treatment of patients with cystic fibrosis (CF) carrying the most common misfolding mutation, F508del-CFTR. This therapy has proved to be of great efficacy in people homozygous for F508del-CFTR and is also useful in individuals with a single F508del allele. Nevertheless, the efficacy of this therapy needs to be improved, especially in light of the extent of its use in patients with rare class II CFTR mutations. Using CFBE41o- cells expressing F508del-CFTR, we provide mechanistic evidence that targeting the E1 ubiquitin-activating enzyme (UBA1) by TAK-243, a small molecule in clinical trials for other diseases, boosts the rescue of F508del-CFTR induced by CFTR correctors. Moreover, TAK-243 significantly increases the F508del-CFTR short-circuit current induced by elexacaftor/tezacaftor/ivacaftor in differentiated human primary airway epithelial cells, a gold standard for the pre-clinical evaluation of patients' responsiveness to pharmacological treatments. This new combinatory approach also leads to an improvement in CFTR conductance on cells expressing other rare CF-causing mutations, including N1303K, for which Trikafta is not approved. These findings show that Trikafta therapy can be improved by the addition of a drug targeting the misfolding detection machinery at the beginning of the ubiquitination cascade and may pave the way for an extension of Trikafta to low/non-responding rare misfolded CFTR mutants.


Asunto(s)
Aminofenoles/administración & dosificación , Benzodioxoles/administración & dosificación , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Fibrosis Quística/tratamiento farmacológico , Fibrosis Quística/genética , Indoles/administración & dosificación , Pirazoles/administración & dosificación , Piridinas/administración & dosificación , Pirimidinas/administración & dosificación , Pirrolidinas/administración & dosificación , Quinolonas/administración & dosificación , Sulfuros/administración & dosificación , Sulfonamidas/administración & dosificación , Enzimas Activadoras de Ubiquitina/antagonistas & inhibidores , Células Cultivadas , Fibrosis Quística/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/química , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Sinergismo Farmacológico , Quimioterapia Combinada , Inhibidores Enzimáticos/administración & dosificación , Humanos , Mutación , Pliegue de Proteína/efectos de los fármacos , Eliminación de Secuencia
4.
Int J Mol Sci ; 24(7)2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-37047546

RESUMEN

S737F is a Cystic Fibrosis (CF) transmembrane conductance regulator (CFTR) missense variant. The aim of our study was to describe the clinical features of a cohort of individuals carrying this variant. In parallel, by exploiting ex vivo functional and molecular analyses on nasal epithelia derived from a subset of S737F carriers, we evaluated its functional impact on CFTR protein as well as its responsiveness to CFTR modulators. We retrospectively collected clinical data of all individuals bearing at least one S737F CFTR variant and followed at the CF Centre of Tuscany region (Italy). Nasal brushing was performed in cooperating individuals. At study end clinical data were available for 10 subjects (mean age: 14 years; range 1-44 years; 3 adult individuals). Five asymptomatic subjects had CF, 2 were CRMS/CFSPID and 3 had an inconclusive diagnosis. Ex vivo analysis on nasal epithelia demonstrated different levels of CF activity. In particular, epithelia derived from asymptomatic CF subjects and from one of the subjects with inconclusive diagnosis showed reduced CFTR activity that could be rescued by treatment with CFTR modulators. On the contrary, in the epithelia derived from the other two individuals with an inconclusive diagnosis, the CFTR-mediated current was similar to that observed in epithelia derived from healthy donors. In vitro functional and biochemical analysis on S737F-CFTR expressed in immortalized bronchial cells highlighted a modest impairment of the channel activity, that was improved by treatment with ivacaftor alone or in combination with tezacaftor/elexacaftor. Our study provide evidence towards the evaluation of CFTR function on ex vivo nasal epithelial cell models as a new assay to help clinicians to classify individuals, in presence of discordance between clinical picture, sweat test and genetic profile.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística , Fibrosis Quística , Adulto , Humanos , Adolescente , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Fibrosis Quística/tratamiento farmacológico , Fibrosis Quística/genética , Fibrosis Quística/diagnóstico , Estudios Retrospectivos , Benzodioxoles/farmacología , Benzodioxoles/uso terapéutico , Mucosa Nasal , Línea Celular , Mutación
5.
Int J Mol Sci ; 23(6)2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-35328596

RESUMEN

Loss-of-function mutations of the CFTR gene cause cystic fibrosis (CF) through a variety of molecular mechanisms involving altered expression, trafficking, and/or activity of the CFTR chloride channel. The most frequent mutation among CF patients, F508del, causes multiple defects that can be, however, overcome by a combination of three pharmacological agents that improve CFTR channel trafficking and gating, namely, elexacaftor, tezacaftor, and ivacaftor. This study was prompted by the evidence of two CF patients, compound heterozygous for F508del and a minimal function variant, who failed to obtain any beneficial effects following treatment with the triple drug combination. Functional studies on nasal epithelia generated in vitro from these patients confirmed the lack of response to pharmacological treatment. Molecular characterization highlighted the presence of an additional amino acid substitution, L467F, in cis with the F508del variant, demonstrating that both patients were carriers of a complex allele. Functional and biochemical assays in heterologous expression systems demonstrated that the double mutant L467F-F508del has a severely reduced activity, with negligible rescue by CFTR modulators. While further studies are needed to investigate the actual prevalence of the L467F-F508del allele, our results suggest that this complex allele should be taken into consideration as plausible cause in CF patients not responding to CFTR modulators.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística , Fibrosis Quística , Alelos , Aminofenoles , Benzodioxoles/farmacología , Benzodioxoles/uso terapéutico , Fibrosis Quística/tratamiento farmacológico , Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Combinación de Medicamentos , Humanos , Indoles , Mutación , Pirazoles , Piridinas , Pirrolidinas , Quinolonas
6.
Int J Mol Sci ; 22(10)2021 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-34067708

RESUMEN

Deletion of phenylalanine at position 508 (F508del) in the CFTR chloride channel is the most frequent mutation in cystic fibrosis (CF) patients. F508del impairs the stability and folding of the CFTR protein, thus resulting in mistrafficking and premature degradation. F508del-CFTR defects can be overcome with small molecules termed correctors. We investigated the efficacy and properties of VX-445, a newly developed corrector, which is one of the three active principles present in a drug (Trikafta®/Kaftrio®) recently approved for the treatment of CF patients with F508del mutation. We found that VX-445, particularly in combination with type I (VX-809, VX-661) and type II (corr-4a) correctors, elicits a large rescue of F508del-CFTR function. In particular, in primary bronchial epithelial cells of CF patients, the maximal rescue obtained with corrector combinations including VX-445 was close to 60-70% of CFTR function in non-CF cells. Despite this high efficacy, analysis of ubiquitylation, resistance to thermoaggregation, protein half-life, and subcellular localization revealed that corrector combinations did not fully normalize F508del-CFTR behavior. Our study indicates that it is still possible to further improve mutant CFTR rescue with the development of corrector combinations having maximal effects on mutant CFTR structural and functional properties.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/efectos de los fármacos , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Pirazoles/farmacología , Piridinas/farmacología , Pirrolidinas/farmacología , Aminofenoles/farmacología , Aminopiridinas/farmacología , Benzodioxoles/farmacología , Bronquios/efectos de los fármacos , Bronquios/metabolismo , Canales de Cloruro/genética , Canales de Cloruro/metabolismo , Fibrosis Quística/tratamiento farmacológico , Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Combinación de Medicamentos , Células Epiteliales/metabolismo , Humanos , Indoles/farmacología , Pliegue de Proteína/efectos de los fármacos , Pirazoles/metabolismo , Piridinas/metabolismo , Pirrolidinas/metabolismo , Quinolinas/farmacología
7.
Hum Mutat ; 40(6): 742-748, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30851139

RESUMEN

Pharmacological rescue of mutant cystic fibrosis transmembrane conductance regulator (CFTR) in cystic fibrosis (CF) depends on the specific defect caused by different mutation classes. We asked whether a patient with the rare p.Gly970Asp (c.2909G>A) mutation could benefit from CFTR pharmacotherapy since a similar missense mutant p.Gly970Arg (c.2908G>C) was previously found to be sensitive to potentiators in vitro but not in vivo. By complementary DNA transfection, we found that both mutations are associated with defective CFTR function amenable to pharmacological treatment. However, analysis of messenger RNA (mRNA) from patient's cells revealed that c.2908G>C impairs RNA splicing whereas c.2909G>A does not perturb splicing and leads to the expected p.Gly970Asp mutation. In agreement with these results, nasal epithelial cells from the p.Gly970Asp patient showed significant improvement of CFTR function upon pharmacological treatment. Our results underline the importance of controlling the effect of CF mutation at the mRNA level to determine if the pharmacotherapy of CFTR basic defect is appropriate.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Fibrosis Quística/genética , Mutación Puntual , Codón , Fibrosis Quística/metabolismo , Células HEK293 , Humanos , Fenotipo , Empalme del ARN , Transfección
8.
J Biol Chem ; 293(4): 1203-1217, 2018 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-29158263

RESUMEN

In cystic fibrosis, deletion of phenylalanine 508 (F508del) in the cystic fibrosis transmembrane conductance regulator (CFTR) anion channel causes misfolding and premature degradation. One possible approach to reducing the detrimental health effects of cystic fibrosis could be the identification of proteins whose suppression rescues F508del-CFTR function in bronchial epithelial cells. However, searches for these potential targets have not yet been conducted, particularly in a relevant airway background using a functional readout. To identify proteins associated with F508del-CFTR processing, we used a high-throughput functional assay to screen an siRNA library targeting 6,650 different cellular proteins. We identified 37 proteins whose silencing significantly rescued F508del-CFTR activity, as indicated by enhanced anion transport through the plasma membrane. These proteins included FAU, UBE2I, UBA52, MLLT6, UBA2, CHD4, PLXNA1, and TRIM24, among others. We focused our attention on FAU, a poorly characterized protein with unknown function. FAU knockdown increased the plasma membrane targeting and function of F508del-CFTR, but not of wild-type CFTR. Investigation into the mechanism of action revealed a preferential physical interaction of FAU with mutant CFTR, leading to its degradation. FAU and other proteins identified in our screening may offer a therapeutically relevant panel of drug targets to correct basic defects in F508del-CFTR processing.


Asunto(s)
Bronquios/metabolismo , Membrana Celular/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Células Epiteliales/metabolismo , Mutación , Proteínas Ribosómicas/metabolismo , Bronquios/patología , Membrana Celular/patología , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Células Epiteliales/patología , Humanos , Proteolisis , Proteínas Ribosómicas/genética
9.
Hum Mutat ; 38(7): 849-862, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28477385

RESUMEN

The transfer of genomic information into the primary RNA sequence can be altered by RNA editing. We have previously shown that genomic variants can be RNA-edited to wild-type. The presence of distinct "edited" iduronate 2-sulfatase (IDS) mRNA transcripts ex vivo evidenced the correction of a nonsense and frameshift variant, respectively, in three unrelated Hunter syndrome patients. This phenomenon was confirmed in various patient samples by a variety of techniques, and was quantified by single-nucleotide primer extension. Western blotting also confirmed the presence of IDS protein similar in size to the wild-type. Since preliminary experimental evidence suggested that the "corrected" IDS proteins produced by the patients were similar in molecular weight and net charge to their wild-type counterparts, an in vitro system employing different cell types was established to recapitulate the site-specific editing of IDS RNA (uridine to cytidine conversion and uridine deletion), and to confirm the findings previously observed ex vivo in the three patients. In addition, confocal microscopy and flow cytometry analyses demonstrated the expression and lysosomal localization in HEK293 cells of GFP-labeled proteins translated from edited IDS mRNAs. Confocal high-content analysis of the two patients' cells expressing wild-type or mutated IDS confirmed lysosomal localization and showed no accumulation in the Golgi or early endosomes.


Asunto(s)
Glicoproteínas/genética , Mucopolisacaridosis II/genética , Mutación , ARN Mensajero/genética , Secuencia de Bases , Codón sin Sentido , Biología Computacional , Exones , Mutación del Sistema de Lectura , Variación Genética , Vectores Genéticos , Genoma Humano , Aparato de Golgi/metabolismo , Células HEK293 , Células HeLa , Hemicigoto , Humanos , Lisosomas/metabolismo , Masculino , Biosíntesis de Proteínas , Edición de ARN
10.
Biochim Biophys Acta ; 1838(1 Pt B): 89-97, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23994600

RESUMEN

TMEM16A is a plasma membrane protein with voltage- and calcium-dependent chloride channel activity. The role of the various TMEM16A domains in expression and function is poorly known. In a previous study, we found that replacing the first ATG of the TMEM16A coding sequence with a nonsense codon (M1X mutation), to force translation from the second ATG localized at position 117, only had minor functional consequences. Therefore, we concluded that this region is dispensable for TMEM16A processing and channel activity. We have now removed the first 116 codons from the TMEM16A coding sequence. Surprisingly, the expression of the resulting mutant, Δ(1-116), resulted in complete loss of activity. We hypothesized that, in the mutant M1X, translation may start at a position before the second ATG, using a non-canonical start codon. Therefore, we placed an HA-epitope at position 89 in the M1X mutant. We found, by western blot analysis, that the HA-epitope can be detected, thus demonstrating that translation starts from an upstream non-ATG codon. We truncated the N-terminus of TMEM16A at different sites while keeping the HA-epitope. We found that stepwise shortening of TMEM16A caused an in parallel stepwise decrease in TMEM16A expression and function. Our results indicate that indeed the N-terminus of TMEM16A is important for its activity. The use of an alternative start codon appears to occur in a naturally-occurring TMEM16A isoform that is particularly expressed in human testis. Future experiments will need to address the role of normal and alternative amino-terminus in TMEM16A structure and function.


Asunto(s)
Calcio/metabolismo , Canales de Cloruro/genética , Cloruros/metabolismo , Proteínas de Neoplasias/genética , Iniciación de la Cadena Peptídica Traduccional/genética , Testículo/metabolismo , Anoctamina-1 , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Canales de Cloruro/química , Canales de Cloruro/metabolismo , Genes Reporteros , Células HEK293 , Humanos , Transporte Iónico/fisiología , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Masculino , Datos de Secuencia Molecular , Mutación , Proteínas de Neoplasias/química , Proteínas de Neoplasias/metabolismo , Sistemas de Lectura Abierta , Técnicas de Placa-Clamp , Estructura Terciaria de Proteína , Relación Estructura-Actividad , Testículo/citología , Transfección
11.
Nanoscale Horiz ; 9(5): 799-816, 2024 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-38563642

RESUMEN

The biological fate of nanomaterials (NMs) is driven by specific interactions through which biomolecules, naturally adhering onto their surface, engage with cell membrane receptors and intracellular organelles. The molecular composition of this layer, called the biomolecular corona (BMC), depends on both the physical-chemical features of the NMs and the biological media in which the NMs are dispersed and cells grow. In this work, we demonstrate that the widespread use of 10% fetal bovine serum in an in vitro assay cannot recapitulate the complexity of in vivo systemic administration, with NMs being transported by the blood. For this purpose, we undertook a comparative journey involving proteomics, lipidomics, high throughput multiparametric in vitro screening, and single molecular feature analysis to investigate the molecular details behind this in vivo/in vitro bias. Our work indirectly highlights the need to introduce novel, more physiological-like media closer in composition to human plasma to produce realistic in vitro screening data for NMs. We also aim to set the basis to reduce this in vitro-in vivo mismatch, which currently limits the formulation of NMs for clinical settings.


Asunto(s)
Nanoestructuras , Corona de Proteínas , Humanos , Nanoestructuras/química , Corona de Proteínas/química , Animales , Proteómica/métodos , Lipidómica/métodos , Bovinos
12.
J Cyst Fibros ; 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38789319

RESUMEN

BACKGROUND: We recently demonstrated that 48 h exposure of primary human bronchial epithelial (hBE) cells, obtained from both CF (F508del homozygous) and non-CF subjects, to the triple drug combination Elexacaftor/Tezacaftor/Ivacaftor (ETI) results in a CFTR genotype-independent modulation of the de novo synthethic pathway of sphingolipids, with an accumulation of dihydroceramides (dHCer). Since dHCer are converted into ceramides (Cer) by the action of a delta-4 sphingolipid desaturase (DEGS) enzyme, we aimed to better understand this off-target effect of ETI (i.e., not related to CFTR rescue) METHODS: hBE cells, both F508del and wild-type, were cultured to create fully differentiated bronchial epithelia. We analyzed Cer and dHCer using an LC-MS based method previously developed by our lab. DEGS expression levels in differentiated hBE cells lysates were quantified by western blot analysis. RESULTS: We demonstrated that 1) dHCer accumulate in hBE with time following prolonged ETI exposure, that 2) similar inhibition occurs in wild-type primary human hepatocytes and that 3) this does not result in an alteration of DEGS expression. We then proved that 4) ETI is a direct inhibitor of DEGS, that 5) Tezacaftor is the molecule responsible for this effect, that 6) the inhibition is concentration dependent. Finally, after repeated oral administration of ETI to naïve, non-CF, mice, we observed a slight accumulation of dHCer in the brain. CONCLUSIONS: We believe that further investigations on Tezacaftor should be envisaged, particularly for the use of ETI during pregnancy, breastfeeding and in the early stages of development. DEGS dysfunction and dHCer accumulation causes impairment in the development of the nervous system, due to a derangement in myelin formation and maintenance.

13.
J Cyst Fibros ; 22(4): 680-682, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37088636

RESUMEN

We report here how the triple combination of drugs elexacaftor/tezacaftor/ivacaftor (ETI) alters the balance of the de-novo synthethic pathway of sphingolipids in primary cells of human bronchial epithelium. The treatment with ETI roughly doubles the levels of dihydrosphingolipids, possibly by modulating the delta(4)-desaturase enzymes that convert dihydroceramides into ceramides. This appears to be an off-target effect of ETI, since it occurs in a genotype-independent manner, for both cystic fibrosis (CF) and non-CF subjects.


Asunto(s)
Fibrosis Quística , Humanos , Fibrosis Quística/tratamiento farmacológico , Fibrosis Quística/genética , Ceramidas , Genotipo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Benzodioxoles , Aminofenoles , Mutación
14.
J Med Chem ; 66(14): 9797-9822, 2023 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-37440686

RESUMEN

In cystic fibrosis (CF), deletion of phenylalanine 508 (F508del) in the CF transmembrane conductance regulator (CFTR) is associated to misfolding and defective gating of the mutant channel. One of the most promising CF drug targets is the ubiquitin ligase RNF5, which promotes F508del-CFTR degradation. Recently, the first ever reported inhibitor of RNF5 was discovered, i.e., the 1,2,4-thiadiazol-5-ylidene inh-2. Here, we designed and synthesized a series of new analogues to explore the structure-activity relationships (SAR) of this class of compounds. SAR efforts ultimately led to compound 16, which showed a greater F508del-CFTR corrector activity than inh-2, good tolerability, and no toxic side effects. Analogue 16 increased the basal level of autophagy similar to what has been described with RNF5 silencing. Furthermore, co-treatment with 16 significantly improved the F508del-CFTR rescue induced by the triple combination elexacaftor/tezacaftor/ivacaftor in CFBE41o- cells. These findings validate the 1,2,4-thiadiazolylidene scaffold for the discovery of novel RNF5 inhibitors and provide evidence to pursue this unprecedented strategy for the treatment of CF.


Asunto(s)
Fibrosis Quística , Tiadiazoles , Humanos , Fibrosis Quística/tratamiento farmacológico , Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Tiadiazoles/farmacología , Tiadiazoles/uso terapéutico , Ubiquitina-Proteína Ligasas/metabolismo , Relación Estructura-Actividad , Aminofenoles , Benzodioxoles/farmacología , Mutación , Proteínas de Unión al ADN/metabolismo
15.
J Cyst Fibros ; 22(3): 525-537, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36543707

RESUMEN

BACKGROUND: Cystic fibrosis is caused by mutations impairing expression, trafficking, stability and/or activity of the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel. The G1244E mutation causes a severe gating defect that it is not completely rescued by ivacaftor but requires the use of a second compound (a co-potentiator). Recently, it has been proposed that the corrector elexacaftor may act also as a co-potentiator. METHODS: By using molecular, biochemical and functional analyses we performed an in-depth characterization of the G1244E-CFTR mutant in heterologous and native cell models. RESULTS: Our studies demonstrate that processing and function of the mutant protein, as well as its pharmacological sensitivity, are markedly dependent on cell background. In heterologous expression systems, elexacaftor mainly acted on G1244E-CFTR as a co-potentiator, thus ameliorating the gating defect. On the contrary, in the native nasal epithelial cell model, elexacaftor did not act as a co-potentiator, but it increased mature CFTR expression possibly by improving mutant's defective stability at the plasma membrane. CONCLUSIONS: Our study highlights the importance of the cell background in the evaluation of CFTR modulator effects. Further, our results draw attention to the need for the development of novel potentiators having different mechanisms with respect to ivacaftor to improve channel activity for mutants with severe gating defect.


Asunto(s)
Fibrosis Quística , Humanos , Fibrosis Quística/tratamiento farmacológico , Fibrosis Quística/genética , Fibrosis Quística/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Aminofenoles/farmacología , Benzodioxoles/farmacología , Mutación
16.
Biomater Adv ; 148: 213355, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36893487

RESUMEN

Visceral myopathy (VSCM) is a rare genetic disease, orphan of pharmacological therapy. VSCM diagnosis is not always straightforward due to symptomatology similarities with mitochondrial or neuronal forms of intestinal pseudo-obstruction. The most prevalent form of VSCM is associates with variants in the gene ACTG2, encoding the protein gamma-2 actin. Overall, VSCM is a mechano-biological disorder, in which different genetic variants lead to similar alterations to the contractile phenotype of enteric smooth muscles, resulting in the emergence of life-threatening symptoms. In this work we analyzed the morpho-mechanical phenotype of human dermal fibroblasts from patients affected with VSCM, demonstrating that they retain a clear signature of the disease when compared with different controls. We evaluated several biophysical traits of fibroblasts, and we show that a measure of cellular traction forces can be used as a non-specific biomarker of the disease. We propose that a simple assay based on traction forces could be designed to provide a valuable support for clinical decision or pre-clinical research.


Asunto(s)
Seudoobstrucción Intestinal , Humanos , Seudoobstrucción Intestinal/diagnóstico , Seudoobstrucción Intestinal/genética , Seudoobstrucción Intestinal/metabolismo , Actinas/genética , Actinas/metabolismo , Contracción Muscular , Fenotipo , Músculo Liso/metabolismo
17.
J Physiol ; 590(23): 6141-55, 2012 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-22988141

RESUMEN

The TMEM16A protein has a potential role as a Ca(2+)-activated Cl(-) channel (CaCC) in airway epithelia where it may be important in the homeostasis of the airway surface fluid. We investigated the function and expression of TMEM16A in primary human bronchial epithelial cells and in a bronchial cell line (CFBE41o-). Under resting conditions, TMEM16A protein expression was relatively low. However, TMEM16A silencing with short-interfering RNAs caused a marked inhibition of CaCC activity, thus demonstrating that a low TMEM16A expression is sufficient to support Ca(2+)-dependent Cl(-) transport. Following treatment for 24-72 h with interleukin-4 (IL-4), a cytokine that induces mucous cell metaplasia, TMEM16A protein expression was strongly increased in approximately 50% of primary bronchial epithelial cells, with a specific localization in the apical membrane. IL-4 treatment also increased the percentage of cells expressing MUC5AC, a marker of goblet cells. Interestingly, MUC5AC was detected specifically in cells expressing TMEM16A. In particular, MUC5AC was found in 15 and 60% of TMEM16A-positive cells when epithelia were treated with IL-4 for 24 or 72 h, respectively. In contrast, ciliated cells showed expression of the cystic fibrosis transmembrane conductance regulator Cl(-) channel but not of TMEM16A. Our results indicate that TMEM16A protein is responsible for CaCC activity in airway epithelial cells, particularly in cells treated with IL-4, and that TMEM16A upregulation by IL-4 appears as an early event of goblet cell differentiation. These findings suggest that TMEM16A expression is particularly required under conditions of mucus hypersecretion to ensure adequate secretion of electrolytes and water.


Asunto(s)
Canales de Cloruro/fisiología , Células Caliciformes/fisiología , Metaplasia/fisiopatología , Proteínas de Neoplasias/fisiología , Anoctamina-1 , Bronquios/citología , Línea Celular , Células Cultivadas , Células Epiteliales , Células HEK293 , Humanos , Interleucina-4/farmacología , ARN Interferente Pequeño/administración & dosificación
18.
J Biol Chem ; 286(17): 15215-26, 2011 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-21383017

RESUMEN

A large fraction of mutations causing cystic fibrosis impair the function of the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel by causing reduced channel activity (gating defect) and/or impaired exit from the endoplasmic reticulum (trafficking defect). Such defects need to be treated with separate pharmacological compounds termed potentiators and correctors, respectively. Here, we report the characterization of aminoarylthiazoles (AATs) as compounds having dual activity. Cells expressing mutant CFTR were studied with functional assays (fluorescence-based halide transport and short circuit current measurements) to assess the effect of acute and chronic treatment with compounds. We found that AATs are effective on F508del, the most frequent cystic fibrosis mutation, which is associated with both a gating and a trafficking defect. AATs are also effective on mutations like G1349D and G551D, which cause only a gating defect. Evaluation of a panel of AAT analogs identified EN277I as the most effective compound. Incubation of cells expressing mutant CFTR with EN277I caused a strong stimulation of channel activity as demonstrated by single channel recordings. Compounds with dual activity such as AATs may be useful for the development of effective drugs for the treatment of cystic fibrosis.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/efectos de los fármacos , Fibrosis Quística/genética , Activación del Canal Iónico , Mutación , Tiazoles/farmacología , Transporte Biológico/efectos de los fármacos , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Humanos , Activación del Canal Iónico/genética , Técnicas de Placa-Clamp , Relación Estructura-Actividad , Tiazoles/uso terapéutico
19.
Cells ; 11(12)2022 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-35741067

RESUMEN

BACKGROUND: Cystic Fibrosis (CF) is a genetic disorder affecting around 1 in every 3000 newborns. In the most common mutation, F508del, the defective anion channel, CFTR, is prevented from reaching the plasma membrane (PM) by the quality check control of the cell. Little is known about how CFTR pharmacological rescue impacts the cell proteome. METHODS: We used high-resolution mass spectrometry, differential ultracentrifugation, machine learning and bioinformatics to investigate both changes in the expression and localization of the human bronchial epithelium CF model (F508del-CFTR CFBE41o-) proteome following treatment with VX-809 (Lumacaftor), a drug able to improve the trafficking of CFTR. RESULTS: The data suggested no stark changes in protein expression, yet subtle localization changes of proteins of the mitochondria and peroxisomes were detected. We then used high-content confocal microscopy to further investigate the morphological and compositional changes of peroxisomes and mitochondria under these conditions, as well as in patient-derived primary cells. We profiled several thousand proteins and we determined the subcellular localization data for around 5000 of them using the LOPIT-DC spatial proteomics protocol. CONCLUSIONS: We observed that treatment with VX-809 induces extensive structural and functional remodelling of mitochondria and peroxisomes that resemble the phenotype of healthy cells. Our data suggest additional rescue mechanisms of VX-809 beyond the correction of aberrant folding of F508del-CFTR and subsequent trafficking to the PM.


Asunto(s)
Fibrosis Quística , Aminopiridinas , Benzodioxoles , Fibrosis Quística/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Epitelio/metabolismo , Humanos , Recién Nacido , Mitocondrias/metabolismo , Proteoma/metabolismo
20.
Pharmaceuticals (Basel) ; 15(3)2022 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-35337072

RESUMEN

Cystic fibrosis (CF) is a genetic disease affecting the lungs and pancreas and causing progressive damage. CF is caused by mutations abolishing the function of CFTR, a protein whose role is chloride's mobilization in the epithelial cells of various organs. Recently a therapy focused on small molecules has been chosen as a main approach to contrast CF, designing and synthesizing compounds acting as misfolding (correctors) or defective channel gating (potentiators). Multi-drug therapies have been tested with different combinations of the two series of compounds. Previously, we designed and characterized two series of correctors, namely, hybrids, which were conceived including the aminoarylthiazole (AAT) core, merged with the benzodioxole carboxamide moiety featured by VX-809. In this paper, we herein proceeded with molecular modeling studies guiding the design of a new third series of hybrids, featuring structural variations at the thiazole moiety and modifications on position 4. These derivatives were tested in different assays including a YFP functional assay on models F508del-CFTR CFBE41o-cells, alone and in combination with VX-445, and by using electrophysiological techniques on human primary bronchial epithelia to demonstrate their F508del-CFTR corrector ability. This study is aimed (i) at identifying three molecules (9b, 9g, and 9j), useful as novel CFTR correctors with a good efficacy in rescuing the defect of F508del-CFTR; and (ii) at providing useful information to complete the structure-activity study within all the three series of hybrids as possible CFTR correctors, supporting the development of pharmacophore modelling studies, taking into account all the three series of hybrids. Finally, in silico evaluation of the hybrids pharmacokinetic (PK) properties contributed to highlight hybrid developability as drug-like correctors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA