Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Eur Rev Med Pharmacol Sci ; 24(16): 8551-8565, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32894560

RESUMEN

OBJECTIVE: Our goal was to assess the efficacy of encapsulated allogeneic islets transplanted in diabetic NOD mice and streptozotocin (STZ)-diabetic nonhuman primates (NHPs). MATERIALS AND METHODS: Murine or NHP islets were microencapsulated and transplanted in non-immunosuppressed mice or NHPs given clinically-acceptable immunosuppressive regimens, respectively. Two NHPs were treated with autologous mesenchymal stem cells (MSCs) and peri-transplant oxygen therapy. Different transplant sites (intraperitoneal [i.p.], omental pouch, omental surface, and bursa omentalis) were tested in separate NHPs. Graft function was monitored by exogenous insulin requirements, fasting blood glucose levels, glucose tolerance tests, percent hemoglobin A1c (% HbA1c), and C-peptide levels. In vitro assessment of grafts included histology, immunohistochemistry, and viability staining; host immune responses were characterized by flow cytometry and cytokine/chemokine multiplex ELISAS. RESULTS: Microencapsulated islet allografts functioned long-term i.p. in diabetic NOD mice without immunosuppression, but for a relatively short time in immunosuppressed NHPs. In the NHPs, encapsulated allo-islets initially reduced hyperglycemia, decreased exogenous insulin requirements, elevated C-peptide levels, and lowered % HbA1c in plasma, but graft function diminished with time, regardless of transplant site. At necropsy, microcapsules were intact and non-fibrotic, but many islets exhibited volume loss, central necrosis and endogenous markers of hypoxia. Animals receiving supplemental oxygen and autologous MSCs showed improved graft function for a longer post-transplant period. In diabetic NHPs and mice, cell-free microcapsules did not elicit a fibrotic response. CONCLUSIONS: The evidence suggested that hypoxia was a major factor for damage to encapsulated islets in vivo. To achieve long-term function, new approaches must be developed to increase the oxygen supply to microencapsulated islets and/or identify donor insulin-secreting cells which can tolerate hypoxia.


Asunto(s)
Aloinjertos , Diabetes Mellitus Experimental/terapia , Trasplante de Islotes Pancreáticos , Animales , Cápsulas/química , Ratones , Ratones Endogámicos NOD
2.
Int J Artif Organs ; 31(8): 697-707, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18825642

RESUMEN

Poly(lactide-co-glycolide) (PLGA) scaffolds have been successfully used in bone tissue engineering, with or without hydroxyapatite (HA) and with a macroporosity given either by simple PLGA sphere packaging and/or by leaching out NaCl. The objective of this work was the optimization of the design parameters for bone tissue engineering scaffolds made by sintering microspheres of PLGA, HA nanocrystals for matrix reinforcement and osteoconduction, and salt crystals for macroporosity and control of matrix pore size. Microsphere fabrication by a single-emulsion and solvent evaporation technique was first optimized to obtain a high yield of PLGA microspheres with a diameter between 80 and 300 microm. The influence of the sintering process and matrix composition on the scaffold structure was then evaluated morphologically and mechanically. Three scaffold types were tested for biocompatibility by culturing with human fibroblasts for up to 14 days. The most important parameters to obtain microspheres with the selected diameter range were the viscosity ratio of the dispersed phase to the continuous phase and the relative volume fraction of the 2 phases. The Young's modulus and the ultimate strength of the sintered matrices ranged between 168-265 MPa and 6-17 MPa, respectively, within the range for trabecular bone. Biocompatibility was demonstrated by fibroblast adhesion, proliferation, and spreading throughout the matrix. This work builds upon previous work of the PLGA/HA sintering technique to give design criteria for fabricating a bone tissue engineered matrix with optimized morphological, functional, and biological properties to fit the requirements of bone replacements.


Asunto(s)
Sustitutos de Huesos/química , Durapatita/química , Ácido Láctico/química , Ácido Poliglicólico/química , Ingeniería de Tejidos , Andamios del Tejido/química , Regeneración Ósea/efectos de los fármacos , Sustitutos de Huesos/farmacología , Adhesión Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Durapatita/farmacología , Módulo de Elasticidad , Fibroblastos/efectos de los fármacos , Humanos , Recién Nacido , Ácido Láctico/farmacología , Ensayo de Materiales , Microesferas , Ácido Poliglicólico/farmacología , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Porosidad , Cloruro de Sodio/química , Factores de Tiempo , Viscosidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA