Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Proc Natl Acad Sci U S A ; 117(5): 2513-2518, 2020 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-31964830

RESUMEN

During natural fertilization, mammalian spermatozoa must pass through the zona pellucida before reaching the plasma membrane of the oocyte. It is assumed that this step involves partial lysis of the zona by sperm acrosomal enzymes, but there has been no unequivocal evidence to support this view. Here we present evidence that acrosin, an acrosomal serine protease, plays an essential role in sperm penetration of the zona. We generated acrosin-knockout (KO) hamsters, using an in vivo transfection CRISPR/Cas9 system. Homozygous mutant males were completely sterile. Acrosin-KO spermatozoa ascended the female genital tract and reached ovulated oocytes in the oviduct ampulla, but never fertilized them. In vitro fertilization (IVF) experiments revealed that mutant spermatozoa attached to the zona, but failed to penetrate it. When the zona pellucida was removed before IVF, all oocytes were fertilized. This indicates that in hamsters, acrosin plays an indispensable role in allowing fertilizing spermatozoa to penetrate the zona. This study also suggests that the KO hamster system would be a useful model for identifying new gene functions or analyzing human and animal disorders because of its technical facility and reproducibility.


Asunto(s)
Acrosina/metabolismo , Cricetinae/metabolismo , Interacciones Espermatozoide-Óvulo , Espermatozoides/enzimología , Acrosina/genética , Acrosoma/metabolismo , Animales , Cricetinae/genética , Femenino , Fertilización In Vitro , Técnicas de Inactivación de Genes , Masculino , Espermatozoides/fisiología , Zona Pelúcida/metabolismo
2.
J Reprod Dev ; 63(6): 539-545, 2017 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-28824024

RESUMEN

In embryo transfer experiments in mice, pseudopregnant females as recipients are prepared by sterile mating with vasectomized males. Because only females at the proestrus stage accept males, such females are selected from a stock of animals based on the appearance of their external genital tract. Therefore, the efficiency of preparing pseudopregnant females largely depends on the size of female colonies and the skill of the operators who select females for sterile mating. In this study, we examined whether the efficiency of preparing pseudopregnant females could be improved by applying an estrous cycle synchronization method by progesterone (P4) pretreatment, which significantly enhances the superovulation outcome in mice. We confirmed that after two daily injections of P4 (designated Days 1 and 2) in randomly selected females, the estrous cycles of most females (about 85%) were synchronized at metestrus on Day 3. When P4-treated females were paired with vasectomized males for 4 days (Days 4-8), a vaginal plug was found in 63% (20/32) of the females on Day 7. After the transfer of vitrified-warmed embryos into their oviducts, 52% (73/140) of the embryos successfully developed into offspring, the rate being comparable to that of the conventional embryo transfer procedure. Similarly, 77% (24/31) of females became pregnant by fertile mating with intact males for 3 days, which allowed the scheduled preparation of foster mothers. Thus, our estrous cycle synchronization method may omit the conventional experience-based process of visually observing the vagina to choose females for embryo transfer. Furthermore, it is expected that the size of female stocks for recipients can be reduced to less than 20%, which could be a great advantage for facilities/laboratories undertaking mouse-assisted reproductive technology.


Asunto(s)
Sincronización del Estro/métodos , Progesterona/administración & dosificación , Seudoembarazo/inducido químicamente , Animales , Transferencia de Embrión , Femenino , Masculino , Embarazo
3.
J Reprod Dev ; 60(3): 187-93, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24583808

RESUMEN

Successful in vitro fertilization (IVF) in mice has been achieved using spermatozoa at concentrations specifically optimized for the experimental conditions, such as species and source of spermatozoa. Although IVF in mice is mostly performed using about 80-500 µl drops, it is expected that the number of spermatozoa used for insemination can be reduced by decreasing the size of the IVF drops. The present study was undertaken to examine the extent to which the number of spermatozoa used for IVF could be reduced by using small droplets (1 µl). We devised the experimental parameters using frozen-thawed spermatozoa from C57BL/6 mice in anticipation of broader applications to other mouse facilities. We found that as few as 5 spermatozoa per droplet could fertilize oocytes (1 or 3 oocytes per droplet), although the fertilization rates were low (13-15%). Practical fertilization rates (> 40%) could be achieved with frozen-thawed C57BL/6J spermatozoa, which are sensitive to cryopreservation, when 20 sperm per droplet were used to inseminate 3 oocytes. Even with spermatozoa from a very poor quality suspension (10% motility), about 25% of oocytes were fertilized. Our calculations indicate that the number of inseminated spermatozoa per oocyte can be reduced to 1/96-1/240 by this method. In two separate embryo transfer experiments, 60% and 47%, respectively, of embryos developed to term. Our microdroplet IVF method may be particularly advantageous when only a limited number of motile spermatozoa are available because of inadequate freezing-thawing or genetic reasons.


Asunto(s)
Fertilización In Vitro/métodos , Interacciones Espermatozoide-Óvulo , Espermatozoides/citología , Animales , Criopreservación , Femenino , Fertilización , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Oocitos/citología , Preservación de Semen , Recuento de Espermatozoides
4.
Sci Rep ; 14(1): 17450, 2024 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-39134590

RESUMEN

Because of the advent of genome-editing technology, gene knockout (KO) hamsters have become attractive research models for diverse diseases in humans. This study established a new KO model of diabetes by disrupting the insulin receptor substrate-2 (Irs2) gene in the golden (Syrian) hamster. Homozygous KO animals were born alive but with delayed postnatal growth until adulthood. They showed hyperglycemia, high HbA1c, and impaired glucose tolerance. However, they normally responded to insulin stimulation, unlike Irs2 KO mice, an obese type 2 diabetes (T2D) model. Consistent with this, Irs2 KO hamsters did not increase serum insulin levels upon glucose administration and showed ß-cell hypoplasia in their pancreas. Thus, our Irs2 KO hamster provide a unique T2D animal model that is distinct from the obese T2D models. This model may contribute to a better understanding of the pathophysiology of human non-obese T2D with ß-cell dysfunction, the most common type of T2D in East Asian countries, including Japan.


Asunto(s)
Diabetes Mellitus Tipo 2 , Proteínas Sustrato del Receptor de Insulina , Mesocricetus , Animales , Cricetinae , Humanos , Masculino , Glucemia/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/genética , Modelos Animales de Enfermedad , Técnicas de Inactivación de Genes , Insulina/metabolismo , Proteínas Sustrato del Receptor de Insulina/metabolismo , Proteínas Sustrato del Receptor de Insulina/genética , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patología
5.
Methods Mol Biol ; 2637: 247-254, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36773152

RESUMEN

The golden (Syrian) hamster (Mesocricetus auratus) is a small rodent belonging to the Cricetidae family. Golden hamsters have several unique characteristics that are advantageous in the study of reproductive and developmental biology: a highly stable 4-day estrous cycle, a high responsiveness to conventional superovulation methods, and a shortest gestation period (16 days) known among eutherian mammals. Besides these advantages, the technical ease of in vitro fertilization (IVF) and intracytoplasmic sperm injection (ICSI) in this species has contributed much to our understanding of the basic mechanisms of mammalian fertilization. However, the exceptionally strong in vitro developmental block of hamster embryos, especially at the two-cell stage, has hampered the production of genetically modified hamsters, which has resulted in limited use of this species for biomedical research. However, the recently developed in vivo genome editing method (improved genome editing via oviductal nucleic acid delivery, i-GONAD) has overcome this shortcoming and made production of gene-edited hamsters much easier than before. This method has the potential to provide a means of reexamining genes whose functions cannot be identified using mouse models, thus leading to the better understanding of gene functions in mammals. In this chapter, we present our procedure for editing the genome of the golden hamster using i-GONAD.


Asunto(s)
Fertilización In Vitro , Semen , Cricetinae , Ratones , Animales , Femenino , Masculino , Mesocricetus , Fertilización In Vitro/métodos , Inyecciones de Esperma Intracitoplasmáticas , Genoma/genética
6.
Sci Rep ; 11(1): 14149, 2021 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-34239008

RESUMEN

Cryopreservation of mouse spermatozoa is widely used for the efficient preservation and safe transport of valuable mouse strains. However, the current cryopreservation method requires special containers (plastic straws), undefined chemicals (e.g., skim milk), liquid nitrogen, and expertise when handling sperm suspensions. Here, we report an easy and quick (EQ) sperm freezing method. The main procedure consists of only one step: dissecting a single cauda epididymis in a microtube containing 20% raffinose solution, which is then stored in a -80 °C freezer. The frozen-thawed spermatozoa retain practical fertilization rates after 1 (51%) or even 3 months (25%) with the C57BL/6 J strain, the most sensitive strain for sperm freezing. More than half of the embryos thus obtained developed into offspring after embryo transfer. Importantly, spermatozoa stored at -80 °C can be transferred into liquid nitrogen for indefinite storage. As far as we know, our EQ method is the easiest and quickest method for mouse sperm freezing and should be applicable in all laboratories without expertise in sperm cryopreservation. This technique can help avoid the loss of irreplaceable strains because of closure of animal rooms in emergency situations such as unexpected microbiological contamination or social emergencies such as the COVID-19 threat.


Asunto(s)
Criopreservación/métodos , Preservación de Semen/métodos , Animales , COVID-19 , Criopreservación/instrumentación , Transferencia de Embrión , Urgencias Médicas , Femenino , Fertilización In Vitro/métodos , Masculino , Ratones Endogámicos C57BL , Preservación de Semen/instrumentación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA