Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Nature ; 579(7797): 111-117, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32103177

RESUMEN

The avascular nature of cartilage makes it a unique tissue1-4, but whether and how the absence of nutrient supply regulates chondrogenesis remain unknown. Here we show that obstruction of vascular invasion during bone healing favours chondrogenic over osteogenic differentiation of skeletal progenitor cells. Unexpectedly, this process is driven by a decreased availability of extracellular lipids. When lipids are scarce, skeletal progenitors activate forkhead box O (FOXO) transcription factors, which bind to the Sox9 promoter and increase its expression. Besides initiating chondrogenesis, SOX9 acts as a regulator of cellular metabolism by suppressing oxidation of fatty acids, and thus adapts the cells to an avascular life. Our results define lipid scarcity as an important determinant of chondrogenic commitment, reveal a role for FOXO transcription factors during lipid starvation, and identify SOX9 as a critical metabolic mediator. These data highlight the importance of the nutritional microenvironment in the specification of skeletal cell fate.


Asunto(s)
Huesos/citología , Microambiente Celular , Condrogénesis , Metabolismo de los Lípidos , Factor de Transcripción SOX9/metabolismo , Células Madre/citología , Células Madre/metabolismo , Animales , Huesos/irrigación sanguínea , Condrocitos/citología , Condrocitos/metabolismo , Ácidos Grasos/metabolismo , Femenino , Privación de Alimentos , Factores de Transcripción Forkhead/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Osteogénesis , Oxidación-Reducción , Factor de Transcripción SOX9/genética , Transducción de Señal , Cicatrización de Heridas
2.
Nature ; 568(7750): 117-121, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30814728

RESUMEN

The extracellular matrix is a major component of the local environment-that is, the niche-that determines cell behaviour1. During metastatic growth, cancer cells shape the extracellular matrix of the metastatic niche by hydroxylating collagen to promote their own metastatic growth2,3. However, only particular nutrients might support the ability of cancer cells to hydroxylate collagen, because nutrients dictate which enzymatic reactions are active in cancer cells4,5. Here we show that breast cancer cells rely on the nutrient pyruvate to drive collagen-based remodelling of the extracellular matrix in the lung metastatic niche. Specifically, we discovered that pyruvate uptake induces the production of α-ketoglutarate. This metabolite in turn activates collagen hydroxylation by increasing the activity of the enzyme collagen prolyl-4-hydroxylase (P4HA). Inhibition of pyruvate metabolism was sufficient to impair collagen hydroxylation and consequently the growth of breast-cancer-derived lung metastases in different mouse models. In summary, we provide a mechanistic understanding of the link between collagen remodelling and the nutrient environment in the metastatic niche.


Asunto(s)
Neoplasias de la Mama/patología , Metástasis de la Neoplasia/patología , Ácido Pirúvico/metabolismo , Animales , Neoplasias de la Mama/enzimología , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Colágeno/química , Colágeno/metabolismo , Modelos Animales de Enfermedad , Activación Enzimática/efectos de los fármacos , Matriz Extracelular/efectos de los fármacos , Matriz Extracelular/metabolismo , Femenino , Humanos , Hidroxilación/efectos de los fármacos , Ácidos Cetoglutáricos/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/secundario , Ratones , Procolágeno-Prolina Dioxigenasa/metabolismo , Ácido Pirúvico/farmacología , Microambiente Tumoral/efectos de los fármacos
3.
Nature ; 565(7740): 511-515, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30651640

RESUMEN

Endochondral ossification, an important process in vertebrate bone formation, is highly dependent on correct functioning of growth plate chondrocytes1. Proliferation of these cells determines longitudinal bone growth and the matrix deposited provides a scaffold for future bone formation. However, these two energy-dependent anabolic processes occur in an avascular environment1,2. In addition, the centre of the expanding growth plate becomes hypoxic, and local activation of the hypoxia-inducible transcription factor HIF-1α is necessary for chondrocyte survival by unidentified cell-intrinsic mechanisms3-6. It is unknown whether there is a requirement for restriction of HIF-1α signalling in the other regions of the growth plate and whether chondrocyte metabolism controls cell function. Here we show that prolonged HIF-1α signalling in chondrocytes leads to skeletal dysplasia by interfering with cellular bioenergetics and biosynthesis. Decreased glucose oxidation results in an energy deficit, which limits proliferation, activates the unfolded protein response and reduces collagen synthesis. However, enhanced glutamine flux increases α-ketoglutarate levels, which in turn increases proline and lysine hydroxylation on collagen. This metabolically regulated collagen modification renders the cartilaginous matrix more resistant to protease-mediated degradation and thereby increases bone mass. Thus, inappropriate HIF-1α signalling results in skeletal dysplasia caused by collagen overmodification, an effect that may also contribute to other diseases involving the extracellular matrix such as cancer and fibrosis.


Asunto(s)
Enfermedades Óseas/metabolismo , Enfermedades Óseas/patología , Condrocitos/metabolismo , Colágeno/biosíntesis , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Animales , Cartílago/metabolismo , Matriz Extracelular/metabolismo , Glucosa/metabolismo , Glutamina/metabolismo , Placa de Crecimiento/metabolismo , Hidroxilación , Prolina Dioxigenasas del Factor Inducible por Hipoxia/deficiencia , Prolina Dioxigenasas del Factor Inducible por Hipoxia/genética , Ácidos Cetoglutáricos/metabolismo , Lisina/metabolismo , Masculino , Ratones , Osteogénesis , Oxidación-Reducción , Prolina/metabolismo
4.
Stem Cells ; 30(11): 2460-71, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22911908

RESUMEN

One of the key challenges in bone tissue engineering is the timely formation of blood vessels that promote the survival of the implanted cells in the construct. Fracture healing largely depends on the presence of an intact periosteum but it is still unknown whether periosteum-derived cells (PDC) are critical for bone repair only by promoting bone formation or also by inducing neovascularization. We first established a protocol to specifically isolate murine PDC (mPDC) from long bones of adult mice. Mesenchymal stem cells were abundantly present in this cell population as more than 50% of the mPDC expressed mesenchymal markers (CD73, CD90, CD105, and stem cell antigen-1) and the cells exhibited trilineage differentiation potential (chondrogenic, osteogenic, and adipogenic). When transplanted on a collagen-calcium phosphate scaffold in vivo, mPDC attracted numerous blood vessels and formed mature bone which comprises a hematopoiesis-supportive stroma. We explored the proangiogenic properties of mPDC using in vitro culture systems and showed that mPDC promote the survival and proliferation of endothelial cells through the production of vascular endothelial growth factor. Coimplantation with endothelial cells demonstrated that mPDC can enhance vasculogenesis by adapting a pericyte-like phenotype, in addition to their ability to stimulate blood vessel ingrowth from the host. In conclusion, these findings demonstrate that periosteal cells contribute to fracture repair, not only through their strong osteogenic potential but also through their proangiogenic features and thus provide an ideal cell source for bone regeneration therapies.


Asunto(s)
Huesos/irrigación sanguínea , Células Madre Mesenquimatosas/fisiología , Neovascularización Fisiológica , Osteogénesis , Periostio/citología , Animales , Antígenos CD/metabolismo , Regeneración Ósea , Sustitutos de Huesos , Huesos/citología , Huesos/fisiología , Fosfatos de Calcio , Diferenciación Celular , Hipoxia de la Célula , Separación Celular , Supervivencia Celular , Células Cultivadas , Técnicas de Cocultivo , Colágeno , Femenino , Citometría de Flujo , Humanos , Masculino , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Desnudos , Ratones Transgénicos , Cultivo Primario de Células , Ingeniería de Tejidos , Andamios del Tejido , Factor A de Crecimiento Endotelial Vascular/metabolismo
5.
J Cell Sci ; 123(Pt 19): 3244-55, 2010 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-20807801

RESUMEN

Mitotic spindle assembly is mediated by two processes: a centrosomal and a chromosomal pathway. RanGTP regulates the latter process by releasing microtubule-associated proteins from inhibitory complexes. NuSAP, a microtubule- and DNA-binding protein, is a target of RanGTP and promotes the formation of microtubules near chromosomes. However, the contribution of NuSAP to cell proliferation in vivo is unknown. Here, we demonstrate that the expression of NuSAP highly correlates with cell proliferation during embryogenesis and adult life, making it a reliable marker of proliferating cells. Additionally, we show that NuSAP deficiency in mice leads to early embryonic lethality. Spindle assembly in NuSAP-deficient cells is highly inefficient and chromosomes remain dispersed in the mitotic cytoplasm. As a result of sustained spindle checkpoint activity, the cells are unable to progress through mitosis, eventually leading to caspase activation and apoptotic cell death. Together, our findings demonstrate that NuSAP is essential for proliferation of embryonic cells and, simultaneously, they underscore the importance of chromatin-induced spindle assembly.


Asunto(s)
Biomarcadores/metabolismo , Cromatina/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Animales , Huesos , Proliferación Celular , Embrión de Mamíferos , Desarrollo Embrionario/genética , Perfilación de la Expresión Génica , Células HeLa , Humanos , Ratones , Ratones Noqueados , Microscopía Confocal , Proteínas Asociadas a Microtúbulos/genética , Huso Acromático/genética
6.
Cell Rep ; 40(4): 111105, 2022 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-35905715

RESUMEN

A functional electron transport chain (ETC) is crucial for supporting bioenergetics and biosynthesis. Accordingly, ETC inhibition decreases proliferation in cancer cells but does not seem to impair stem cell proliferation. However, it remains unclear how stem cells metabolically adapt. In this study, we show that pharmacological inhibition of complex III of the ETC in skeletal stem and progenitor cells induces glycolysis side pathways and reroutes the tricarboxylic acid (TCA) cycle to regenerate NAD+ and preserve cell proliferation. These metabolic changes also culminate in increased succinate and 2-hydroxyglutarate levels that inhibit Ten-eleven translocation (TET) DNA demethylase activity, thereby preserving self-renewal and multilineage potential. Mechanistically, mitochondrial malate dehydrogenase and reverse succinate dehydrogenase activity proved to be essential for the metabolic rewiring in response to ETC inhibition. Together, these data show that the metabolic plasticity of skeletal stem and progenitor cells allows them to bypass ETC blockade and preserve their self-renewal.


Asunto(s)
Ciclo del Ácido Cítrico , Mitocondrias , Proliferación Celular , Metabolismo Energético/fisiología , Mitocondrias/metabolismo , Respiración
7.
J Bone Miner Res ; 36(3): 604-616, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33253422

RESUMEN

Skeletal homeostasis critically depends on the proper anabolic functioning of osteolineage cells. Proliferation and matrix synthesis are highly demanding in terms of biosynthesis and bioenergetics, but the nutritional requirements that support these processes in bone-forming cells are not fully understood. Here, we show that glutamine metabolism is a major determinant of osteoprogenitor function during bone mass accrual. Genetic inactivation of the rate-limiting enzyme glutaminase 1 (GLS1) results in decreased postnatal bone mass, caused by impaired biosynthesis and cell survival. Mechanistically, we uncovered that GLS1-mediated glutamine catabolism supports nucleotide and amino acid synthesis, required for proliferation and matrix production. In addition, glutamine-derived glutathione prevents accumulation of reactive oxygen species and thereby safeguards cell viability. The pro-anabolic role of glutamine metabolism was further underscored in a model of parathyroid hormone (PTH)-induced bone formation. PTH administration increases glutamine uptake and catabolism, and GLS1 deletion fully blunts the PTH-induced osteoanabolic response. Taken together, our findings indicate that glutamine metabolism in osteoprogenitors is indispensable for bone formation. © 2020 American Society for Bone and Mineral Research (ASBMR).


Asunto(s)
Osteogénesis , Hormona Paratiroidea , Animales , Densidad Ósea , Glutaminasa , Glutamina , Masculino , Ratones , Osteoblastos
8.
J Clin Invest ; 116(12): 3150-9, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17099775

RESUMEN

Genomic actions induced by 1alpha25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)] are crucial for normal bone metabolism, mainly because they regulate active intestinal calcium transport. To evaluate whether the vitamin D receptor (VDR) has a specific role in growth-plate development and endochondral bone formation, we investigated mice with conditional inactivation of VDR in chondrocytes. Growth-plate chondrocyte development was not affected by the lack of VDR. Yet vascular invasion was impaired, and osteoclast number was reduced in juvenile mice, resulting in increased trabecular bone mass. In vitro experiments confirmed that VDR signaling in chondrocytes directly regulated osteoclastogenesis by inducing receptor activator of NF-kappaB ligand (RANKL) expression. Remarkably, mineral homeostasis was also affected in chondrocyte-specific VDR-null mice, as serum phosphate and 1,25(OH)(2)D levels were increased in young mice, in whom growth-plate activity is important. Both in vivo and in vitro analysis indicated that VDR inactivation in chondrocytes reduced the expression of FGF23 by osteoblasts and consequently led to increased renal expression of 1alpha-hydroxylase and of sodium phosphate cotransporter type IIa. Taken together, our findings provide evidence that VDR signaling in chondrocytes is required for timely osteoclast formation during bone development and for the endocrine action of bone in phosphate homeostasis.


Asunto(s)
Condrocitos/metabolismo , Factores de Crecimiento de Fibroblastos/genética , Osteoblastos/metabolismo , Receptores de Calcitriol/fisiología , Animales , Animales Recién Nacidos , Desarrollo Óseo/genética , Desarrollo Óseo/fisiología , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Células Cultivadas , Condrocitos/citología , Factor-23 de Crecimiento de Fibroblastos , Expresión Génica/genética , Placa de Crecimiento/citología , Placa de Crecimiento/metabolismo , Homeostasis/fisiología , Inmunohistoquímica , Ratones , Mutación/genética , Osteoblastos/citología , Osteoclastos/citología , Osteoclastos/metabolismo , Osteogénesis/genética , Osteogénesis/fisiología , Fosfatos/metabolismo , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/análisis , Ligando RANK/genética , Ligando RANK/fisiología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores de Calcitriol/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal , Factores de Tiempo , Vitamina D/análogos & derivados , Vitamina D/genética , Vitamina D/fisiología
9.
J Bone Miner Res ; 34(2): 333-348, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30452097

RESUMEN

Tissue engineering holds great promise for bone regenerative medicine, but clinical translation remains challenging. An important factor is the low cell survival after implantation, primarily caused by the lack of functional vasculature at the bone defect. Interestingly, bone development and repair initiate predominantly via an avascular cartilage template, indicating that chondrocytes are adapted to limited vascularization. Given these advantageous properties of chondrocytes, we questioned whether tissue-engineered cartilage intermediates implanted ectopically in mice are able to form bone, even when the volume size increases. Here, we show that endochondral ossification proceeds efficiently when implant size is limited (≤30 mm3 ), but chondrogenesis and matrix synthesis are impaired in the center of larger implants, leading to a fibrotic core. Increasing the level of angiogenic growth factors does not improve this outcome, because this strategy enhances peripheral bone formation, but disrupts the conversion of cartilage into bone in the center, resulting in a fibrotic core, even in small implants. On the other hand, activation of hypoxia signaling in cells before implantation stimulates chondrogenesis and matrix production, which culminates in enhanced bone formation throughout the entire implant. Together, our results show that induction of angiogenesis alone may lead to adverse effects during endochondral bone repair, whereas activation of hypoxia signaling represents a superior therapeutic strategy to improve endochondral bone regeneration in large tissue-engineered implants. © 2018 American Society for Bone and Mineral Research.


Asunto(s)
Cartílago/metabolismo , Condrogénesis , Prolina Dioxigenasas del Factor Inducible por Hipoxia , Osteogénesis , Ingeniería de Tejidos , Animales , Cartílago/citología , Prolina Dioxigenasas del Factor Inducible por Hipoxia/antagonistas & inhibidores , Prolina Dioxigenasas del Factor Inducible por Hipoxia/genética , Prolina Dioxigenasas del Factor Inducible por Hipoxia/metabolismo , Ratones , Ratones Transgénicos
10.
Bone ; 43(5): 915-20, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18691680

RESUMEN

Osteoclastic bone degradation depends on the activity of several proteolytic enzymes, in particular to those belonging to the classes of cysteine proteinases and matrix metalloproteinases (MMPs). Yet, several findings suggest that the two types of plasminogen activators (PA), the tissue- and urokinase-type PA (tPA and uPA, respectively) are also involved in this process. To investigate the involvement of these enzymes in osteoclast-mediated bone matrix digestion, we analyzed bone explants of mice that were deficient for both tPA and uPA and compared them to wild type mice. The number of osteoclasts as well as their ultrastructural appearance was similar for both genotypes. Next, calvarial and metatarsal bone explants were cultured for 6 or 24 h in the presence of selective inhibitors of cysteine proteinases or MMPs and the effect on osteoclast-mediated bone matrix degradation was assessed. Inhibition of the activity of cysteine proteinases in explants of control mice resulted in massive areas of non-digested demineralized bone matrix adjacent to the ruffled border of osteoclasts, an effect already maximal after 6 h. However, at that time point these demineralized areas were not observed in bone explants from uPA/tPA deficient mice. After prolonged culturing (24 h), a comparable amount of demineralized bone matrix adjacent to actively resorbing osteoclasts was observed in the two genotypes, suggesting that degradation was delayed in uPA/tPA deficient bones. The activity of cysteine proteinases as assessed in bone extracts, proved to be higher in extracts from uPA/tPA(-/-) bones. Immunolocalization of the integrin alpha(v)beta(3) of in vitro generated osteoclasts demonstrated a more diffuse labeling of osteoclasts derived from uPA/tPA(-/-) mice. Taken together, our data indicate that the PAs play a hitherto unrecognized role in osteoclast-mediated bone digestion. The present findings suggest that the PAs are involved in the initial steps of bone degradation, probably by a proper integrin-dependent attachment to bone.


Asunto(s)
Resorción Ósea , Osteoclastos/fisiología , Cráneo/metabolismo , Activador de Tejido Plasminógeno/metabolismo , Activador de Plasminógeno de Tipo Uroquinasa/metabolismo , Animales , Células Cultivadas , Cisteína Endopeptidasas/metabolismo , Inhibidores de Cisteína Proteinasa/metabolismo , Integrina beta3/metabolismo , Metaloproteinasas de la Matriz/metabolismo , Ratones , Ratones Noqueados , Cráneo/citología , Activador de Tejido Plasminógeno/genética , Activador de Plasminógeno de Tipo Uroquinasa/genética
11.
Bone ; 87: 176-86, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27058876

RESUMEN

Engineered cell-based constructs are an appealing strategy to treat large skeletal defects. However, transplanted cells are often confronted with an environment that is deprived of oxygen and nutrients. Upon hypoxia, most cell types activate hypoxia-inducible factor 1α (HIF-1α) signaling, but its importance for implanted osteoprogenitor cells during bone regeneration is not elucidated. To this end, we specifically deleted the HIF--1α isoform in periosteal progenitor cells and show that activation of HIF-1α signaling in these cells is critical for bone repair by modulating angiogenic and metabolic processes. Activation of HIF-1α is not only crucial for blood vessel invasion, by enhancing angiogenic growth factor production, but also for periosteal cell survival early after implantation, when blood vessels have not yet invaded the construct. HIF-1α signaling limits oxygen consumption to avoid accumulation of harmful ROS and preserve redox balance, and additionally induces a switch to glycolysis to prevent energetic distress. Altogether, our results indicate that the proangiogenic capacity of implanted periosteal cells is HIF-1α regulated and that metabolic adaptations mediate post-implantation cell survival.


Asunto(s)
Regeneración Ósea , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Animales , Hipoxia de la Célula , Supervivencia Celular , Metabolismo Energético , Eliminación de Gen , Técnicas de Silenciamiento del Gen , Glucólisis , Células Endoteliales de la Vena Umbilical Humana , Humanos , Ratones Endogámicos C57BL , Neovascularización Fisiológica , Periostio/citología , Especies Reactivas de Oxígeno/metabolismo
12.
Cell Metab ; 23(2): 265-79, 2016 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-26863487

RESUMEN

Cell-based therapy is a promising strategy in regenerative medicine, but the poor survival rate of the implanted cells remains a major challenge and limits clinical translation. We preconditioned periosteal cells to the hypoxic and ischemic environment of the bone defect site by deleting prolyl hydroxylase domain-containing protein 2 (PHD2), resulting in hypoxia-inducible factor 1 alpha (HIF-1α) stabilization. This strategy increased postimplantation cell survival and improved bone regeneration. The enhanced cell viability was angiogenesis independent but relied on combined changes in glutamine and glycogen metabolism. HIF-1α stabilization stimulated glutaminase-mediated glutathione synthesis, maintaining redox homeostasis at baseline and during oxidative or nutrient stress. Simultaneously, HIF-1α signaling increased glycogen storage, preventing an energy deficit during nutrient or oxygen deprivation. Pharmacological inhibition of PHD2 recapitulated the adaptations in glutamine and glycogen metabolism and, consequently, the beneficial effects on cell survival. Thus, targeting cellular metabolism is an appealing strategy for bone regeneration and cell-based therapy in general.


Asunto(s)
Metabolismo Energético , Glutamina/metabolismo , Glucógeno/metabolismo , Homeostasis , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Osteocitos/trasplante , Animales , Regeneración Ósea , Respiración de la Célula , Supervivencia Celular , Eliminación de Gen , Técnicas de Silenciamiento del Gen , Silenciador del Gen , Glutaminasa/metabolismo , Ratones , Neovascularización Fisiológica , Osteocitos/metabolismo , Oxidación-Reducción , Estrés Oxidativo , Periostio/patología , Especies Reactivas de Oxígeno/metabolismo
13.
Bone ; 81: 502-512, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26319498

RESUMEN

The active form of vitamin D, 1,25(OH)2D, is a crucial regulator of calcium homeostasis, especially through stimulation of intestinal calcium transport. Lack of intestinal vitamin D receptor (VDR) signaling does however not result in hypocalcemia, because the increased 1,25(OH)2D levels stimulate calcium handling in extra-intestinal tissues. Systemic VDR deficiency, on the other hand, results in hypocalcemia because calcium handling is impaired not only in the intestine, but also in kidney and bone. It remains however unclear whether low intestinal VDR activity, as observed during aging, is sufficient for intestinal calcium transport and for mineral and bone homeostasis. To this end, we generated mice that expressed the Vdr exclusively in the gut, but at reduced levels. We found that ~15% of intestinal VDR expression greatly prevented the Vdr null phenotype in young-adult mice, including the severe hypocalcemia. Serum calcium levels were, however, in the low-normal range, which may be due to the suboptimal intestinal calcium absorption, renal calcium loss, insufficient increase in bone resorption and normal calcium incorporation in the bone matrix. In conclusion, our results indicate that low intestinal VDR levels improve intestinal calcium absorption compared to Vdr null mice, but also show that 1,25(OH)2D-mediated fine-tuning of renal calcium reabsorption and bone mineralization and resorption is required to maintain fully normal serum calcium levels.


Asunto(s)
Calcio/sangre , Calcio/metabolismo , Absorción Intestinal/fisiología , Envejecimiento/sangre , Envejecimiento/metabolismo , Animales , Transporte Biológico Activo , Remodelación Ósea/fisiología , Calcitriol/metabolismo , Calcitriol/farmacología , Calcio de la Dieta/metabolismo , Células Cultivadas , Expresión Génica/efectos de los fármacos , Homeostasis , Mucosa Intestinal/metabolismo , Riñón/metabolismo , Ratones , Ratones Noqueados , Especificidad de Órganos , Osteoblastos/efectos de los fármacos , Osteoblastos/metabolismo , Hormona Paratiroidea/farmacología , Ligando RANK/genética , Receptores de Calcitriol/deficiencia , Receptores de Calcitriol/genética , Receptores de Calcitriol/metabolismo
14.
J Clin Invest ; 122(5): 1803-15, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22523068

RESUMEN

Serum calcium levels are tightly controlled by an integrated hormone-controlled system that involves active vitamin D [1,25(OH)(2)D], which can elicit calcium mobilization from bone when intestinal calcium absorption is decreased. The skeletal adaptations, however, are still poorly characterized. To gain insight into these issues, we analyzed the consequences of specific vitamin D receptor (Vdr) inactivation in the intestine and in mature osteoblasts on calcium and bone homeostasis. We report here that decreased intestinal calcium absorption in intestine-specific Vdr knockout mice resulted in severely reduced skeletal calcium levels so as to ensure normal levels of calcium in the serum. Furthermore, increased 1,25(OH)(2)D levels not only stimulated bone turnover, leading to osteopenia, but also suppressed bone matrix mineralization. This resulted in extensive hyperosteoidosis, also surrounding the osteocytes, and hypomineralization of the entire bone cortex, which may have contributed to the increase in bone fractures. Mechanistically, osteoblastic VDR signaling suppressed calcium incorporation in bone by directly stimulating the transcription of genes encoding mineralization inhibitors. Ablation of skeletal Vdr signaling precluded this calcium transfer from bone to serum, leading to better preservation of bone mass and mineralization. These findings indicate that in mice, maintaining normocalcemia has priority over skeletal integrity, and that to minimize skeletal calcium storage, 1,25(OH)(2)D not only increases calcium release from bone, but also inhibits calcium incorporation in bone.


Asunto(s)
Conservadores de la Densidad Ósea/farmacología , Calcificación Fisiológica/efectos de los fármacos , Calcio/sangre , Receptores de Calcitriol/deficiencia , Vitamina D/farmacología , Absorción , Animales , Densidad Ósea/efectos de los fármacos , Enfermedades Óseas Metabólicas/sangre , Enfermedades Óseas Metabólicas/metabolismo , Huesos/metabolismo , Huesos/patología , Calcificación Fisiológica/genética , Calcio/metabolismo , Línea Celular , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Homeostasis , Mucosa Intestinal/metabolismo , Ratones , Ratones Noqueados , Osteoblastos/metabolismo , Proteínas de Transporte de Fosfato/genética , Proteínas de Transporte de Fosfato/metabolismo , Hidrolasas Diéster Fosfóricas/genética , Hidrolasas Diéster Fosfóricas/metabolismo , Receptores de Calcitriol/genética , Transducción de Señal
15.
Dev Cell ; 19(2): 329-44, 2010 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-20708594

RESUMEN

During endochondral bone development, the first osteoblasts differentiate in the perichondrium surrounding avascular cartilaginous rudiments; the source of trabecular osteoblasts inside the later bone is, however, unknown. Here, we generated tamoxifen-inducible transgenic mice bred to Rosa26R-LacZ reporter mice to follow the fates of stage-selective subsets of osteoblast lineage cells. Pulse-chase studies showed that osterix-expressing osteoblast precursors, labeled in the perichondrium prior to vascular invasion of the cartilage, give rise to trabecular osteoblasts, osteocytes, and stromal cells inside the developing bone. Throughout the translocation, some precursors were found to intimately associate with invading blood vessels, in pericyte-like fashion. A similar coinvasion occurs during endochondral healing of bone fractures. In contrast, perichondrial mature osteoblasts did not exhibit perivascular localization and remained in the outer cortex of developing bones. These findings reveal the specific involvement of immature osteoblast precursors in the coupled vascular and osteogenic transformation essential to endochondral bone development and repair.


Asunto(s)
Vasos Sanguíneos/metabolismo , Desarrollo Óseo/fisiología , Regeneración Ósea/fisiología , Osteoblastos/fisiología , Células Madre/fisiología , Animales , Biomarcadores/metabolismo , Vasos Sanguíneos/citología , Huesos/irrigación sanguínea , Huesos/patología , Huesos/fisiología , Linaje de la Célula , Movimiento Celular , Condrocitos/citología , Condrocitos/fisiología , Embrión de Mamíferos/anatomía & histología , Embrión de Mamíferos/fisiología , Femenino , Fracturas Óseas , Masculino , Ratones , Ratones Transgénicos , Osteoblastos/citología , Pericitos/metabolismo , Embarazo , Células Madre/citología
16.
Cancer Res ; 70(16): 6537-47, 2010 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-20682798

RESUMEN

Treatment of bone metastases is largely symptomatic and is still an unmet medical need. Current therapies mainly target the late phase of tumor-induced osteoclast activation and hereby inhibit further metastatic growth. This treatment method is, however, less effective in preventing initial tumor engraftment, a process that is supposed to depend on the bone microenvironment. We explored whether bone-derived placental growth factor (PlGF), a homologue of vascular endothelial growth factor-A, regulates osteolytic metastasis. Osteogenic cells secrete PlGF, the expression of which is enhanced by bone-metastasizing breast tumor cells. Selective neutralization of host-derived PlGF by anti-mouse PlGF (alphaPlGF) reduced the incidence, number, and size of bone metastases, and preserved bone mass. alphaPlGF did not affect metastatic tumor angiogenesis but inhibited osteoclast formation by preventing the upregulation of the osteoclastogenic cytokine receptor activator of NF-kappaB ligand in osteogenic cells, as well as by blocking the autocrine osteoclastogenic activity of PlGF. alphaPlGF also reduced the engraftment of tumor cells in the bone and inhibited their interaction with matrix components in the metastatic niche. alphaPlGF therefore inhibits not only the progression of metastasis but also the settlement of tumor in the bone. These findings identify novel properties of PlGF and suggest that alphaPlGF might offer opportunities for adjuvant therapy of bone metastasis.


Asunto(s)
Neoplasias Óseas/secundario , Neoplasias de la Mama/patología , Osteoclastos/patología , Proteínas Gestacionales/antagonistas & inhibidores , Proteínas Gestacionales/metabolismo , Animales , Anticuerpos Monoclonales/farmacología , Neoplasias Óseas/metabolismo , Neoplasias de la Mama/metabolismo , Diferenciación Celular/fisiología , Línea Celular Tumoral , Femenino , Humanos , Neoplasias Pulmonares/secundario , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Desnudos , Osteoclastos/metabolismo , Factor de Crecimiento Placentario , Trasplante Heterólogo
17.
Cell Metab ; 8(3): 257-65, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18762026

RESUMEN

Calcium signaling controls multiple cellular functions and is regulated by the release from internal stores and entry from extracellular fluid. In bone, osteoclast differentiation is induced by RANKL (receptor activator of NF-kappaB ligand)-evoked intracellular Ca(2+) oscillations, which trigger nuclear factor-activated T cells (NFAT) c1-responsive gene transcription. However, the Ca(2+) channels involved remain largely unidentified. Here we show that genetic ablation in mice of Trpv4, a Ca(2+)-permeable channel of the transient receptor potential (TRP) family, increases bone mass by impairing bone resorption. TRPV4 mediates basolateral Ca(2+) influx specifically in large osteoclasts when Ca(2+) oscillations decline. TRPV4-mediated Ca(2+) influx hereby secures intracellular Ca(2+) concentrations, ensures NFATc1-regulated gene transcription, and regulates the terminal differentiation and activity of osteoclasts. In conclusion, our data indicate that Ca(2+) oscillations and TRPV4-mediated Ca(2+) influx are sequentially required to sustain NFATc1-dependent gene expression throughout osteoclast differentiation, and we propose TRPV4 as a therapeutic target for bone diseases.


Asunto(s)
Calcio/metabolismo , Diferenciación Celular/fisiología , Osteoclastos/metabolismo , Canales Catiónicos TRPV/metabolismo , Animales , Densidad Ósea , Resorción Ósea/patología , Ratones , Ratones Noqueados , Modelos Biológicos , Factores de Transcripción NFATC/metabolismo , Osteoclastos/patología , Transducción de Señal , Canales Catiónicos TRPV/deficiencia , Canales Catiónicos TRPV/genética
18.
Arch Biochem Biophys ; 460(2): 300-5, 2007 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-17224125

RESUMEN

Reduced intestinal calcium absorption may be part of the pathogenesis of glucocorticoid-induced osteoporosis. 1,25(OH)2D3 is the major regulator of the expression of the active duodenal calcium absorption genes: TRPV6 (influx), calbindin-D9K (intracellular transfer) and PMCA1b (extrusion). We investigated the influence of dexamethasone (5 days: 2 mg/kg bw) on calcium absorption in vivo and on the expression of intestinal and renal calcium transporters in calcium-deprived mice. Total and free 1,25(OH)2D3-concentrations were halved, in line with decreased 25(OH)D3-1-alpha-hydroxylase and increased 24-hydroxylase expression. Nevertheless, no difference in duodenal or renal calcium transporter expression pattern could be detected between vehicle and dexamethasone-treated mice. Accordingly, dexamethasone did not affect in vivo calcium absorption. By contrast, increased calcemia and collagen C-terminal telopeptide levels reflected increased bone resorption. Decreased osteocalcin levels suggested impaired bone formation. Hence, short-term glucocorticoid excess in young animals affected bone metabolism without detectable changes in intestinal or renal calcium handling.


Asunto(s)
Calcitriol/metabolismo , Calcio/metabolismo , Dexametasona/efectos adversos , Duodeno/metabolismo , Glucocorticoides/efectos adversos , Osteoporosis/metabolismo , 25-Hidroxivitamina D3 1-alfa-Hidroxilasa/biosíntesis , Absorción/efectos de los fármacos , Animales , Resorción Ósea/inducido químicamente , Resorción Ósea/metabolismo , Calcio/deficiencia , ATPasas Transportadoras de Calcio/metabolismo , Dexametasona/farmacología , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Glucocorticoides/farmacología , Masculino , Ratones , Osteocalcina/metabolismo , Osteoporosis/inducido químicamente
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA