Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Biosens Bioelectron ; 222: 115006, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36538869

RESUMEN

Biosensors based on graphene field-effect transistors have become a promising tool for detecting a broad range of analytes. However, their performance is substantially affected by the functionalization protocol. In this work, we use a controlled in-vacuum physical method for the covalent functionalization of graphene to construct ultrasensitive aptamer-based biosensors (aptasensors) able to detect hepatitis C virus core protein. These devices are highly specific and robust, achieving attomolar detection of the viral protein in human blood plasma. Such an improved sensitivity is rationalized by theoretical calculations showing that induced polarization at the graphene interface, caused by the proximity of covalently bound molecular probe, modulates the charge balance at the graphene/aptamer interface. This charge balance causes a net shift of the Dirac cone providing enhanced sensitivity for the attomolar detection of the target proteins. Such an unexpected effect paves the way for using this kind of graphene-based functionalized platforms for ultrasensitive and real-time diagnostics of different diseases.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Grafito , Hepatitis C , Humanos , Proteínas del Núcleo Viral , Hepatitis C/diagnóstico
2.
J Mol Biol ; 434(7): 167501, 2022 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-35183559

RESUMEN

Hepatitis C virus (HCV) core is a highly conserved and multifunctional protein that forms the viral capsid, making it an attractive target for HCV detection and inhibition. Aptamers are in vitro selected, single-stranded nucleic acids (RNA or ssDNA) with growing applicability in viral diagnostics and therapy. We have carried out DNA and RNA in vitro selection against six different variants of HCV core protein: two versions of the full-length protein of genotype 1, and the hydrophilic domain of genotypes 1 to 4. The aptamer populations obtained were analyzed by means of Ultra-Deep Sequencing (UDS), the most abundant sequences were identified and a number of highly represented sequence motifs were unveiled. Affinity (measured as the dissociation constant, Kd) of the most abundant DNA and RNA aptamers were quantified using Enzyme-Linked OligoNucleotide Assay (ELONA)-based methods. Some aptamers with nanomolar or subnanomolar Kd values (as low as 0.4 nM) were the common outcome of DNA and RNA selections against different HCV core variants. They were tested in sandwich and competitive biosensor assays, reaching a limit of detection for HCV core of 2 pM. Additionally, the two most prevalent and high affinity aptamers were assayed in Huh-7.5 reporter cell lines infected with HCV, where they decreased both the viral progeny titer and the extracellular viral RNA level, while increasing the amount of intracellular viral RNA. Our results suggest that these aptamers inhibit HCV capsid assembly and virion formation, thus making them good candidate molecules for the design of novel therapeutic approaches for hepatitis C.


Asunto(s)
Aptámeros de Nucleótidos , Hepacivirus , Hepatitis C , Técnica SELEX de Producción de Aptámeros , Proteínas del Núcleo Viral , Aptámeros de Nucleótidos/química , Aptámeros de Nucleótidos/genética , Cápside , Técnicas de Cultivo de Célula , ADN/química , ADN/genética , Genotipo , Hepacivirus/genética , Hepacivirus/aislamiento & purificación , Hepacivirus/fisiología , Hepatitis C/diagnóstico , Humanos , ARN/química , ARN/genética , Técnica SELEX de Producción de Aptámeros/métodos , Proteínas del Núcleo Viral/análisis , Proteínas del Núcleo Viral/genética , Ensamble de Virus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA