RESUMEN
BACKGROUND: Isocitrate dehydrogenase (IDH)-mutant grade 2 gliomas are malignant brain tumors that cause considerable disability and premature death. Vorasidenib, an oral brain-penetrant inhibitor of mutant IDH1 and IDH2 enzymes, showed preliminary activity in IDH-mutant gliomas. METHODS: In a double-blind, phase 3 trial, we randomly assigned patients with residual or recurrent grade 2 IDH-mutant glioma who had undergone no previous treatment other than surgery to receive either oral vorasidenib (40 mg once daily) or matched placebo in 28-day cycles. The primary end point was imaging-based progression-free survival according to blinded assessment by an independent review committee. The key secondary end point was the time to the next anticancer intervention. Crossover to vorasidenib from placebo was permitted on confirmation of imaging-based disease progression. Safety was also assessed. RESULTS: A total of 331 patients were assigned to receive vorasidenib (168 patients) or placebo (163 patients). At a median follow-up of 14.2 months, 226 patients (68.3%) were continuing to receive vorasidenib or placebo. Progression-free survival was significantly improved in the vorasidenib group as compared with the placebo group (median progression-free survival, 27.7 months vs. 11.1 months; hazard ratio for disease progression or death, 0.39; 95% confidence interval [CI], 0.27 to 0.56; P<0.001). The time to the next intervention was significantly improved in the vorasidenib group as compared with the placebo group (hazard ratio, 0.26; 95% CI, 0.15 to 0.43; P<0.001). Adverse events of grade 3 or higher occurred in 22.8% of the patients who received vorasidenib and in 13.5% of those who received placebo. An increased alanine aminotransferase level of grade 3 or higher occurred in 9.6% of the patients who received vorasidenib and in no patients who received placebo. CONCLUSIONS: In patients with grade 2 IDH-mutant glioma, vorasidenib significantly improved progression-free survival and delayed the time to the next intervention. (Funded by Servier; INDIGO ClinicalTrials.gov number, NCT04164901.).
Asunto(s)
Antineoplásicos , Glioma , Recurrencia Local de Neoplasia , Humanos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Progresión de la Enfermedad , Método Doble Ciego , Glioma/tratamiento farmacológico , Glioma/genética , Isocitrato Deshidrogenasa/genética , Recurrencia Local de Neoplasia/tratamiento farmacológico , Piridinas/efectos adversos , Antineoplásicos/uso terapéutico , Inhibidores Enzimáticos/uso terapéuticoRESUMEN
A high tumour mutational burden (hypermutation) is observed in some gliomas1-5; however, the mechanisms by which hypermutation develops and whether it predicts the response to immunotherapy are poorly understood. Here we comprehensively analyse the molecular determinants of mutational burden and signatures in 10,294 gliomas. We delineate two main pathways to hypermutation: a de novo pathway associated with constitutional defects in DNA polymerase and mismatch repair (MMR) genes, and a more common post-treatment pathway, associated with acquired resistance driven by MMR defects in chemotherapy-sensitive gliomas that recur after treatment with the chemotherapy drug temozolomide. Experimentally, the mutational signature of post-treatment hypermutated gliomas was recapitulated by temozolomide-induced damage in cells with MMR deficiency. MMR-deficient gliomas were characterized by a lack of prominent T cell infiltrates, extensive intratumoral heterogeneity, poor patient survival and a low rate of response to PD-1 blockade. Moreover, although bulk analyses did not detect microsatellite instability in MMR-deficient gliomas, single-cell whole-genome sequencing analysis of post-treatment hypermutated glioma cells identified microsatellite mutations. These results show that chemotherapy can drive the acquisition of hypermutated populations without promoting a response to PD-1 blockade and supports the diagnostic use of mutational burden and signatures in cancer.
Asunto(s)
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Glioma/genética , Glioma/terapia , Mutación , Animales , Antineoplásicos Alquilantes/farmacología , Antineoplásicos Alquilantes/uso terapéutico , Neoplasias Encefálicas/inmunología , Reparación de la Incompatibilidad de ADN/genética , Frecuencia de los Genes , Genoma Humano/efectos de los fármacos , Genoma Humano/genética , Glioma/inmunología , Humanos , Masculino , Ratones , Repeticiones de Microsatélite/efectos de los fármacos , Repeticiones de Microsatélite/genética , Mutagénesis/efectos de los fármacos , Mutación/efectos de los fármacos , Fenotipo , Pronóstico , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Análisis de Secuencia de ADN , Temozolomida/farmacología , Temozolomida/uso terapéutico , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
PURPOSE OF REVIEW: Isocitrate dehydrogenase (IDH) mutation is a defining molecular driver of WHO grade 2-4 astrocytomas and oligodendrogliomas. In this article, we review the recent therapeutic approaches specifically targeting IDH-mutant gliomas and summarize ongoing clinical trials in this population. RECENT FINDINGS: The IDH inhibitor vorasidenib recently demonstrated its efficacy after surgical resection in grade 2 IDH-mutated gliomas. Several studies in patients with IDH-mutant gliomas are currently exploring various strategies to target IDH mutations, including the use of small-molecule inhibitors, immunotherapies, peptide vaccines and agents targeting metabolic and epigenomic vulnerabilities. SUMMARY: Mutant-IDH targeting holds significant promise in treating progressive or recurrent IDH-mutant gliomas. Recent results with IDH inhibitors will change practice and influence the existing guidelines in a near future.
RESUMEN
Non-Hodgkin lymphomas (NHL) commonly occur in immune-deficient (ID) patients, both HIV-infected and transplanted, and are often EBV-driven with cerebral localization, raising the question of tumor immunogenicity, a critical issue for treatment responses. We investigated the immunogenomics of 68 lymphoproliferative disorders from 51 ID (34 posttransplant, 17 HIV+) and 17 immunocompetent patients. Overall, 72% were Large B Cells Lymphoma (LBCL) and 25% were primary central-nervous-system lymphoma (PCNSL) while 40% were EBV-positive. Tumor whole-exome and RNA sequencing, along with a bioinformatics pipeline allowed analysis of tumor mutational burden (TMB), tumor landscape and microenvironment (TME) and prediction of tumor neoepitopes. Both TMB (2.2 vs 3.4/Mb, p=0.001) and neoepitopes numbers (40 vs 200, p=0.00019) were lower in EBVpositive than in EBV-negative NHL, regardless of the immune status. In contrast both EBV and the immune status influenced the tumor mutational profile, with HNRNPF and STAT3 mutations exclusively observed in EBV-positive and ID NHL, respectively. Peripheral blood T-cell responses against tumor neoepitopes were detected in all EBV-negative cases but in only half EBV-positive ones, including responses against IgH-derived MHC-class-II restricted neoepitopes. The TME analysis showed higher CD8 T cell infiltrates in EBVpositive vs EBV-negative NHL, together with a more tolerogenic profile composed of Tregs, type-M2 macrophages and an increased expression of negative immune-regulators. Our results highlight that the immunogenomics of NHL in patients with immunodeficiency primarily relies on the tumor EBV status, while T cell recognition of tumor- and IgH-specific neoepitopes is conserved in EBV-negative patients, offering potential opportunities for future T cell-based immune therapies.
RESUMEN
BACKGROUND: Dihydroxy-6-[18F]fluoro-L-phenylalanine (18F-FDOPA) positron emission tomography (PET) is a valuable tool for managing high-grade gliomas (HGGs), but there is a lack of literature on its relationship with glioma subtypes since the 2021 reclassification of brain tumors. There is also debate surrounding the mechanism of 18F-FDOPA uptake, particularly after chemoradiation therapy. This study aimed to investigate the correlation between 18F-FDOPA uptake and histomolecular characteristics, particularly L-amino acid transporter 1 (LAT1) expression, in recurrent gliomas, and examine their impact on survival in HGGs. METHODS: Thirty-nine patients with recurrent HGGs (14 isocitrate dehydrogenase [IDH]-mutant, 25 IDH-wildtype) who underwent a brain 18F-FDOPA PET/computed tomography (CT) or PET/magnetic resonance imaging (MRI) followed by surgical resection of the 18F-FDOPA-avid lesion within 6 months, were retrospectively reviewed. PET results were compared with histological examination and for SCL7A5/LAT1 immunostaining. The study also examined the relationship between PET parameters, LAT1 expression, and survival outcomes. RESULTS: Astrocytoma IDH-mutant G4 had higher 18F-FDOPA uptake than glioblastoma IDH-wildtype G4 (maximum tumor-to-normal brain ratio [TBRmax] 5 [3.4-9] vs. 3.8 [2.8-5.9], p = 0.02). IDH-mutant gliomas had higher LAT1 expression than IDH-wildtype gliomas (100 [14-273] vs. 15.5 [0-137], p < 0.05) as well as higher TBRmax (5 [2.4-9] vs. 3.8 [2.8-6], p < 0.05). In survival analysis, LAT1 score >100 was a predictor for longer progression-free survival in IDH-mutant HGGs. CONCLUSIONS: To our knowledge, our study is the first to suggest a link between LAT1 expression and IDH mutation status. We showed that higher TBRmax was associated with higher LAT1 expression and IDH mutation status. Further studies are needed to better understand the mechanisms underlying amino acid PET tracers uptake, especially in the post-radiation and chemotherapy settings.
Asunto(s)
Neoplasias Encefálicas , Glioma , Humanos , Estudios Retrospectivos , Glioma/diagnóstico por imagen , Glioma/genética , Dihidroxifenilalanina , Tomografía de Emisión de Positrones/métodos , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologíaRESUMEN
OBJECTIVE: Mesial Temporal Lobe Epilepsy-associated Hippocampal Sclerosis (MTLE-HS) is a syndrome associated with various aetiologies. We previously identified CD34-positive extravascular stellate cells (CD34+ cells) possibly related to BRAFV600E oncogenic variant in a subset of MTLE-HS. We aimed to identify the BRAFV600E oncogenic variants and characterise the CD34+ cells. METHODS: We analysed BRAFV600E oncogenic variant by digital droplet Polymerase Chain Reaction in 53 MTLE-HS samples (25 with CD34+ cells) and nine non-expansive neocortical lesions resected during epilepsy surgery (five with CD34+ cells). Ex vivo multi-electrode array recording, immunolabelling, methylation microarray and single nuclei RNAseq were performed on BRAFwildtype MTLE-HS and BRAFV600E mutant non-expansive lesion of hippocampus and/or neocortex. RESULTS: We identified a BRAFV600E oncogenic variant in five MTLE-HS samples with CD34+ cells (19%) and in five neocortical samples with CD34+ cells (100%). Single nuclei RNAseq of resected samples revealed two unique clusters of abnormal cells (including CD34+ cells) associated with senescence and oligodendrocyte development in both hippocampal and neocortical BRAFV600E mutant samples. The co-expression of the oncogene-induced senescence marker p16INK4A and the outer subventricular zone radial glia progenitor marker HOPX in CD34+ cells was confirmed by multiplex immunostaining. Pseudotime analysis showed that abnormal cells share a common lineage from progenitors to myelinating oligodendrocytes. Epilepsy surgery led to seizure freedom in eight of the 10 patients with BRAF mutant lesions. INTERPRETATION: BRAFV600E underlies a subset of MTLE-HS and epileptogenic non-expansive neocortical focal lesions. Detection of the oncogenic variant may help diagnosis and open perspectives for targeted therapies.
Asunto(s)
Epilepsias Parciales , Epilepsia del Lóbulo Temporal , Epilepsia , Neocórtex , Humanos , Epilepsia del Lóbulo Temporal/patología , Neocórtex/patología , Proteínas Proto-Oncogénicas B-raf/genética , Hipocampo/patología , Epilepsias Parciales/genética , Epilepsias Parciales/complicaciones , Epilepsias Parciales/patología , Epilepsia/patología , Esclerosis/patología , Imagen por Resonancia MagnéticaRESUMEN
AIMS: The distinction between CNS WHO grade 2 and grade 3 is instrumental in choosing between observational follow-up and adjuvant treatment for resected astrocytomas IDH-mutant. However, the criteria of CNS WHO grade 2 vs 3 have not been updated since the pre-IDH era. METHODS: Maximal mitotic activity in consecutive high-power fields corresponding to 3 mm2 was examined for 118 lower-grade astrocytomas IDH-mutant. The prognostic value for time-to-treatment (TTT) and overall survival (OS) of mitotic activity and other putative prognostic factors (including age, performance status, pre-surgical tumour volume, multilobar involvement, post-surgical residual tumour volume and midline involvement) was assessed for tumours with ATRX loss and the absence of CDKN2A homozygous deletion or CDK4 amplification, contrast enhancement, histological necrosis and microvascular proliferation. RESULTS: Seventy-one per cent of the samples had <6 mitoses per 3 mm2 . Mitotic activity, residual volume and multilobar involvement were independent prognostic factors of TTT. The threshold of ≥6 mitoses per 3 mm2 identified patients with a shorter TTT (median 18.5 months). A residual volume ≥1 cm3 also identified patients with a shorter TTT (median 24.5 months). The group defined by <6 mitoses per 3 mm2 and a residual volume <1 cm3 had the longest TTT (median 73 months) and OS (100% survival at 7 years). These findings were confirmed in a validation cohort of 52 tumours. CONCLUSIONS: Mitotic activity and post-surgical residual volume can be combined to evaluate the prognosis for patients with resected astrocytomas IDH-mutant. Patients with <6 mitoses per 3 mm2 and a residual volume <1 cm3 were the best candidates for observational follow-up.
Asunto(s)
Astrocitoma , Neoplasias Encefálicas , Humanos , Neoplasias Encefálicas/patología , Pronóstico , Homocigoto , Volumen Residual , Eliminación de Secuencia , Mutación , Astrocitoma/genética , Astrocitoma/patología , Isocitrato Deshidrogenasa/genéticaRESUMEN
Diffuse midline gliomas (DMG) H3 K27-altered are incurable grade 4 gliomas and represent a major challenge in neuro-oncology. This tumour type is now classified in four subtypes by the 2021 edition of the WHO Classification of the Central Nervous System (CNS) tumours. However, the H3.3-K27M subgroup still appears clinically and molecularly heterogeneous. Recent publications reported that rare patients presenting a co-occurrence of H3.3K27M with BRAF or FGFR1 alterations tended to have a better prognosis. To better study the role of these co-driver alterations, we assembled a large paediatric and adult cohort of 29 tumours H3K27-altered with co-occurring activating mutation in BRAF or FGFR1 as well as 31 previous cases from the literature. We performed a comprehensive histological, radiological, genomic, transcriptomic and DNA methylation analysis. Interestingly, unsupervised t-distributed Stochastic Neighbour Embedding (tSNE) analysis of DNA methylation profiles regrouped BRAFV600E and all but one FGFR1MUT DMG in a unique methylation cluster, distinct from the other DMG subgroups and also from ganglioglioma (GG) or high-grade astrocytoma with piloid features (HGAP). This new DMG subtype harbours atypical radiological and histopathological profiles with calcification and/or a solid tumour component both for BRAFV600E and FGFR1MUT cases. The analyses of a H3.3-K27M BRAFV600E tumour at diagnosis and corresponding in vitro cellular model showed that mutation in H3-3A was the first event in the oncogenesis. Contrary to other DMG, these tumours occur more frequently in the thalamus (70% for BRAFV600E and 58% for FGFR1MUT) and patients have a longer overall survival with a median above three years. In conclusion, DMG, H3 K27 and BRAF/FGFR1 co-altered represent a new subtype of DMG with distinct genotype/phenotype characteristics, which deserve further attention with respect to trial interpretation and patient management.
Asunto(s)
Astrocitoma , Neoplasias Encefálicas , Neoplasias del Sistema Nervioso Central , Glioma , Adulto , Humanos , Niño , Histonas/genética , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Proteínas Proto-Oncogénicas B-raf/genética , Glioma/diagnóstico por imagen , Glioma/genética , Glioma/patología , Astrocitoma/genética , Mutación/genética , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/genéticaRESUMEN
BACKGROUND & AIMS: Next-generation sequencing (NGS) was recently approved by the United States Food and Drug Administration to detect microsatellite instability (MSI) arising from defective mismatch repair (dMMR) in patients with metastatic colorectal cancer (mCRC) before treatment with immune checkpoint inhibitors (ICI). In this study, we aimed to evaluate and improve the performance of NGS to identify MSI in CRC, especially dMMR mCRC treated with ICI. METHODS: CRC samples used in this post hoc study were reassessed centrally for MSI and dMMR status using the reference methods of pentaplex polymerase chain reaction and immunohistochemistry. Whole-exome sequencing (WES) was used to evaluate MSISensor, the Food and Drug Administration-approved and NGS-based method for assessment of MSI. This was performed in (1) a prospective, multicenter cohort of 102 patients with mCRC (C1; 25 dMMR/MSI, 24 treated with ICI) from clinical trials NCT02840604 and NCT033501260, (2) an independent retrospective, multicenter cohort of 113 patients (C2; 25 mCRC, 88 non-mCRC, all dMMR/MSI untreated with ICI), and (3) a publicly available series of 118 patients with CRC from The Cancer Genome Atlas (C3; 51 dMMR/MSI). A new NGS-based algorithm, namely MSICare, was developed. Its performance for assessment of MSI was compared with MSISensor in C1, C2, and C3 at the exome level or after downsampling sequencing data to the MSK-IMPACT gene panel. MSICare was validated in an additional retrospective, multicenter cohort (C4) of 152 patients with new CRC (137 dMMR/MSI) enriched in tumors deficient in MSH6 (n = 35) and PMS2 (n = 9) after targeted sequencing of samples with an optimized set of microsatellite markers (MSIDIAG). RESULTS: At the exome level, MSISensor was highly specific but failed to diagnose MSI in 16% of MSI/dMMR mCRC from C1 (4 of 25; sensitivity, 84%; 95% confidence interval [CI], 63.9%-95.5%), 32% of mCRC (8 of 25; sensitivity, 68%; 95% CI, 46.5%-85.1%), and 9.1% of non-mCRC from C2 (8 of 88; sensitivity, 90.9%; 95% CI, 82.9%-96%), and 9.8% of CRC from C3 (5 of 51; sensitivity, 90.2%; 95% CI, 78.6%-96.7%). Misdiagnosis included 4 mCRCs treated with ICI, of which 3 showed an overall response rate without progression at this date. At the exome level, reevaluation of the MSI genomic signal using MSICare detected 100% of cases with true MSI status among C1 and C2. Further validation of MSICare was obtained in CRC tumors from C3, with 96.1% concordance for MSI status. Whereas misdiagnosis with MSISensor even increased when analyzing downsampled WES data from C1 and C2 with microsatellite markers restricted to the MSK-IMPACT gene panel (sensitivity, 72.5%; 95% CI, 64.2%-79.7%), particularly in the MSH6-deficient setting, MSICare sensitivity and specificity remained optimal (100%). Similar results were obtained with MSICare after targeted NGS of tumors from C4 with the optimized microsatellite panel MSIDIAG (sensitivity, 99.3%; 95% CI, 96%-100%; specificity, 100%). CONCLUSIONS: In contrast to MSISensor, the new MSICare test we propose performs at least as efficiently as the reference method, MSI polymerase chain reaction, to detect MSI in CRC regardless of the defective MMR protein under both WES and targeted NGS conditions. We suggest MSICare may rapidly become a reference method for NGS-based testing of MSI in CRC, especially in mCRC, where accurate MSI status is required before the prescription of ICI.
Asunto(s)
Algoritmos , Biomarcadores de Tumor/genética , Neoplasias Colorrectales/genética , Reparación de la Incompatibilidad de ADN , Secuenciación del Exoma , Secuenciación de Nucleótidos de Alto Rendimiento , Inestabilidad de Microsatélites , Toma de Decisiones Clínicas , Ensayos Clínicos como Asunto , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/inmunología , Bases de Datos Genéticas , Francia , Humanos , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inmunohistoquímica , Reacción en Cadena de la Polimerasa Multiplex , Valor Predictivo de las Pruebas , Estudios Prospectivos , Reproducibilidad de los Resultados , Estudios RetrospectivosRESUMEN
OBJECTIVES: Brain biopsy is a useful surgical procedure in the management of patients with suspected neoplastic lesions. Its role in neurologic diseases of unknown etiology remains controversial, especially in ICU patients. This study was undertaken to determine the feasibility, safety, and the diagnostic yield of brain biopsy in critically ill patients with neurologic diseases of unknown etiology. We also aimed to compare these endpoints to those of non-ICU patients who underwent a brain biopsy in the same clinical context. DESIGN: Monocenter, retrospective, observational cohort study. SETTING: A French tertiary center. PATIENTS: All adult patients with neurologic diseases of unknown etiology under mechanical ventilation undergoing in-ICU brain biopsy between January 2008 and October 2020 were compared with a cohort of non-ICU patients. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Among the 2,207 brain-biopsied patients during the study period, 234 biopsies were performed for neurologic diseases of unknown etiology, including 29 who were mechanically ventilated and 205 who were not ICU patients. Specific histological diagnosis and final diagnosis rates were 62.1% and 75.9%, respectively, leading to therapeutic management modification in 62.1% of cases. Meningitis on prebiopsy cerebrospinal fluid analysis was the sole predictor of obtaining a final diagnosis (2.3 [1.4-3.8]; p = 0.02). ICU patients who experienced therapeutic management modification after the biopsy had longer survival (p = 0.03). The grade 1 to 4 (mild to severe) complication rates were: 24.1%, 3.5%, 0%, and 6.9%, respectively. Biopsy-related mortality was significantly higher in ICU patients compared with non-ICU patients (6.9% vs 0%; p = 0.02). Hematological malignancy was associated with biopsy-related mortality (1.5 [1.01-2.6]; p = 0.04). CONCLUSIONS: Brain biopsy in critically ill patients with neurologic disease of unknown etiology is associated with high diagnostic yield, therapeutic modifications and postbiopsy survival advantage. Safety profile seems acceptable in most patients. The benefit/risk ratio of brain biopsy in this population should be carefully weighted.
Asunto(s)
Enfermedad Crítica , Enfermedades del Sistema Nervioso , Adulto , Biopsia/efectos adversos , Biopsia/métodos , Encéfalo , Enfermedad Crítica/terapia , Estudios de Factibilidad , Humanos , Enfermedades del Sistema Nervioso/diagnóstico , Enfermedades del Sistema Nervioso/etiología , Respiración Artificial , Estudios RetrospectivosRESUMEN
SUMMARY: The expansion of targeted panel sequencing efforts has created opportunities for large-scale genomic analysis, but tools for copy-number quantification on panel data are lacking. We introduce ASCETS, a method for the efficient quantitation of arm and chromosome-level copy-number changes from targeted sequencing data. AVAILABILITY AND IMPLEMENTATION: ASCETS is implemented in R and is freely available to non-commercial users on GitHub: https://github.com/beroukhim-lab/ascets, along with detailed documentation. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
Asunto(s)
Aneuploidia , Programas Informáticos , Documentación , Genoma , Genómica , HumanosRESUMEN
PURPOSE: This study aimed to assess the benefit-risk ratio by determining diagnostic yield and safety of brainstem biopsies in adult patients. The secondary objectives were (i) to compare brainstem biopsy safety and postbiopsy patients' outcomes and survival with those of patients biopsied for a brain or cerebellar lesion, and (ii) to assess the impact of brainstem biopsy on final diagnosis and further therapeutic management. METHODS: Among 1784 stereotactic biopsies performed in adult patients at a tertiary center between April 2009 and October 2020, we retrospectively examined 50 consecutive brainstem biopsies. We compared variables regarding diagnostic yield, safety and post-biopsy outcomes between brainstem biopsy patients and brain/cerebellum biopsy patients. RESULTS: Brainstem biopsy led to a diagnosis in 86% of patients (94.6% in patients with suspected tumor). Lesion contrast enhancement on imaging was the sole predictor of obtaining a diagnosis. Rates of symptomatic complications and mortality were significantly higher in brainstem biopsy patients compared to brain/cerebellum biopsy patients (20% vs 0%; p < 0.001 and 6% vs 0%; p = 0.01, respectively). Transfrontal trajectory and prebiopsy swallowing disorders were predictors of brainstem biopsy-related symptomatic complications. Brainstem biopsy findings led to diagnostic change in 22% of patients. CONCLUSIONS: Stereotactic biopsy in adult patients with brainstem lesion has a high diagnostic yield. Although stereotactic brainstem biopsy is associated with more functional and fatal complications than biopsies targeting the brain/cerebellum, its safety profile appears acceptable. Thus, the benefit-risk ratio of stereotactic biopsy in patients with brainstem lesion is favorable but should nevertheless be carefully weighted on a case-by-case basis.
Asunto(s)
Biopsia , Neoplasias del Tronco Encefálico , Técnicas Estereotáxicas , Adulto , Humanos , Biopsia/efectos adversos , Biopsia/métodos , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/patología , Neoplasias del Tronco Encefálico/diagnóstico , Neoplasias del Tronco Encefálico/patología , Estudios Retrospectivos , Técnicas Estereotáxicas/efectos adversos , Enfermedades del Sistema Nervioso Central/diagnóstico , Enfermedades del Sistema Nervioso Central/etiología , Enfermedades del Sistema Nervioso Central/patología , Medición de Riesgo , Resultado del TratamientoRESUMEN
PURPOSE OF REVIEW: Recent evidence suggests high tumor mutational burden (TMB-H) as a predictor of response to immune checkpoint blockade (ICB) in cancer. However, results in TMB-H gliomas have been inconsistent. In this article, we discuss the main pathways leading to TMB-H in glioma and how these might affect immunotherapy response. RECENT FINDINGS: Recent characterization of TMB-H gliomas showed that 'post-treatment' related to mismatch repair (MMR) deficiency is the most common mechanism leading to TMB-H in gliomas. Unexpectedly, preliminary evidence suggested that benefit with ICB is rare in this population. Contrary to expectations, ICB response was reported in a subset of TMB-H gliomas associated with constitutional MMR or polymerase epsilon (POLE) defects (e.g., constitutional biallelic MMRd deficiency). In other cancers, several trials suggest increased ICB efficacy is critically associated with increased lymphocyte infiltration at baseline which is missing in most gliomas. Further characterization of the immune microenvironment of gliomas is needed to identify biomarkers to select the patients who will benefit from ICB. SUMMARY: Intrinsic molecular and immunological differences between gliomas and other cancers might explain the lack of efficacy of ICB in a subset of TMB-H gliomas. Novel combinations and biomarkers are awaited to improve immunotherapy response in these cancers.
Asunto(s)
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/inmunología , Glioma/genética , Glioma/inmunología , Mutación , Neoplasias Encefálicas/terapia , Glioma/terapia , Humanos , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Valor Predictivo de las Pruebas , Ensayos Clínicos Controlados Aleatorios como AsuntoRESUMEN
BACKGROUND: Antibiotic resistance is increasing among urinary pathogens, resulting in worse clinical and economic outcomes. We analysed factors associated with antibiotic-resistant bacteria (ARB) in patients hospitalized for urinary tract infection, using the comprehensive French national claims database. METHODS: Hospitalized urinary tract infections were identified from 2015 to 2017. Cases (due to ARB) were matched to controls (without ARB) according to year, age, sex, infection, and bacterium. Healthcare-associated (HCAI) and community-acquired (CAI) infections were analysed separately; logistic regressions were stratified by sex. RESULTS: From 9460 cases identified, 6468 CAIs and 2855 HCAIs were matched with controls. Over a 12-months window, the risk increased when exposure occurred within the last 3 months. The following risk factors were identified: antibiotic exposure, with an OR reaching 3.6 [2.8-4.5] for men with CAI, mostly associated with broad-spectrum antibiotics; surgical procedure on urinary tract (OR 2.0 [1.5-2.6] for women with HCAI and 1.3 [1.1-1.6] for men with CAI); stay in intensive care unit > 7 days (OR 1.7 [1.2-2.6] for men with HCAI). Studied co-morbidities had no impact on ARB. CONCLUSIONS: This study points out the critical window of 3 months for antibiotic exposure, confirms the impact of broad-spectrum antibiotic consumption on ARB, and supports the importance of prevention during urological procedures, and long intensive care unit stays.
Asunto(s)
Antibacterianos/uso terapéutico , Farmacorresistencia Bacteriana , Seguro de Salud/estadística & datos numéricos , Infecciones Urinarias/tratamiento farmacológico , Anciano , Anciano de 80 o más Años , Estudios de Casos y Controles , Prescripciones de Medicamentos/estadística & datos numéricos , Femenino , Francia/epidemiología , Hospitalización/estadística & datos numéricos , Humanos , Masculino , Persona de Mediana Edad , Factores de Riesgo , Infecciones Urinarias/microbiologíaRESUMEN
PURPOSE OF REVIEW: The management of low-grade (grade II) oligodendrogliomas is still controversial, due to their rarity and long-term survival. According to recent WHO 2016 Classification of central nervous system tumors oligodendrogliomas are defined by the coexistence of molecular alterations, such as isocitrate dehydrogenase (IDH)1/2 mutations and 1p/19q codeletion. These tumors have better outcome and higher response to chemotherapy compared with diffuse astrocytomas. RECENT FINDINGS: The association of radiotherapy and procarbazine, lomustine (CCNU), vincristine chemotherapy in low-grade oligodendrogliomas is definitely superior over radiotherapy alone, and yields median progression-free survival and overall survival values exceeding by far 10 years. Chemotherapy alone yields results that are inferior compared with radiotherapyâ+âprocarbazine, CCNU, vincristine but may better preserve cognitive functions from radiotherapy-induced damage. Chemosensitivity of oligodendrogliomas is related to a high percentage of O6-methylguanine-DNA methyltransferase methylation and low expression of DNA repair genes. Recurrent defects in mismatch repair pathways may induce hypermutation and secondary resistance to temozolomide, but not to nitrosoureas. SUMMARY: Reoperation at progression following initial chemotherapy is increasingly adopted, thus allowing a further delay of radiotherapy. In the future targeting IDH1/2 mutations following incomplete surgery may represent a new innovative option.
Asunto(s)
Antineoplásicos/uso terapéutico , Neoplasias Encefálicas/tratamiento farmacológico , Lomustina/uso terapéutico , Oligodendroglioma/tratamiento farmacológico , Temozolomida/uso terapéutico , Vincristina/uso terapéutico , Humanos , Resultado del TratamientoRESUMEN
BACKGROUND: Glioblastoma (GBM) is the most common and aggressive primary malignant brain tumor. Leptomeningeal spread (LMS) is a severe complication of GBM, raising diagnostic and therapeutic challenges in clinical routine. METHODS: We performed a review of the literature focused on LMS in GBM. MEDLINE and EMBASE databases were queried from 1989 to 2019 for articles describing diagnosis and therapeutic options in GBM LMS, as well as risk factors and pathogenic mechanisms. RESULTS: We retrieved 155 articles, including retrospective series, case reports, and early phase clinical trials, as well as preclinical studies. These articles confirmed that LMS in GBM remains (a) a diagnostic challenge with cytological proof of LMS obtained in only 35% of cases and (b) a therapeutic challenge with a median overall survival below 2 months with best supportive care alone. For patients faced with suggestive clinical symptoms, whole neuroaxis magnetic resonance imaging and cerebrospinal fluid analysis are both recommended. Liquid biopsies are under investigation and may help prompt a reliable diagnosis. Based on the literature, a multimodal and personalized therapeutic approach of LMS, including surgery, radiotherapy, systemic cytotoxic chemotherapy, and intrathecal chemotherapies, may provide benefits to selected patients. Interestingly, molecular targeted therapies appear promising in case of actionable molecular target and should be considered. CONCLUSION: As the prognosis of glioblastoma is improving over time, LMS becomes a more common complication. Our review highlights the need for translational studies and clinical trials dedicated to this challenging condition in order to improve diagnostic and therapeutic strategies. IMPLICATIONS FOR PRACTICE: This review summarizes the diagnostic tools and applied treatments for leptomeningeal spread, a complication of glioblastoma, as well as their outcomes. The importance of exhaustive molecular testing for molecular targeted therapies is discussed. New diagnostic and therapeutic strategies are outlined, and the need for translational studies and clinical trials dedicated to this challenging condition is highlighted.
Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/terapia , Glioblastoma/diagnóstico , Glioblastoma/terapia , Humanos , Imagen por Resonancia Magnética , Pronóstico , Estudios RetrospectivosRESUMEN
BACKGROUND: Astroblastoma (ABM) is a rare glial brain tumor. Recurrent meningioma 1 (MN1) alterations have been recently identified in most pediatric cases. Adolescent and adult cases, however, remain molecularly poorly defined. MATERIALS AND METHODS: We performed clinical and molecular characterization of a retrospective cohort of 14 adult and 1 adolescent ABM. RESULTS: Strikingly, we found that MN1 fusions are a rare event in this age group (1/15). Using methylation profiling and targeted sequencing, most cases were reclassified as either pleomorphic xanthoastrocytomas (PXA)-like or high-grade glioma (HGG)-like. PXA-like ABM show BRAF mutation (6/7 with V600E mutation and 1/7 with G466E mutation) and CD34 expression. Conversely, HGG-like ABM harbored specific alterations of diffuse midline glioma (2/5) or glioblastoma (GBM; 3/5). These latter patients showed an unfavorable clinical course with significantly shorter overall survival (p = .021). Mitogen-activated protein kinase pathway alterations (including FGFR fusion, BRAF and NF1 mutations) were present in 10 of 15 patients and overrepresented in the HGG-like group (3/5) compared with previously reported prevalence of these alterations in GBM and diffuse midline glioma. CONCLUSION: We suggest that gliomas with astroblastic features include a variety of molecularly sharply defined entities. Adult ABM harboring molecular features of PXA and HGG should be reclassified. Central nervous system high-grade neuroepithelial tumors with MN1 alterations and histology of ABM appear to be uncommon in adults. Astroblastic morphology in adults should thus prompt thorough molecular investigation aiming at a clear histomolecular diagnosis and identifying actionable drug targets, especially in the mitogen-activated protein kinase pathway. IMPLICATIONS FOR PRACTICE: Astroblastoma (ABM) remains a poorly defined and controversial entity. Although meningioma 1 alterations seem to define a large subset of pediatric cases, adult cases remain molecularly poorly defined. This comprehensive molecular characterization of 1 adolescent and 14 adult ABM revealed that adult ABM histology comprises several molecularly defined entities, which explains clinical diversity and identifies actionable targets. Namely, pleomorphic xanthoastrocytoma-like ABM cases show a favorable prognosis whereas high-grade glioma (glioblastoma and diffuse midline gliome)-like ABM show significantly worse clinical courses. These results call for in-depth molecular analysis of adult gliomas with astroblastic features for diagnostic and therapeutic purposes.
Asunto(s)
Neoplasias Encefálicas/genética , Neoplasias Neuroepiteliales/genética , Adulto , Anciano , Neoplasias Encefálicas/patología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Proteínas Quinasas Activadas por Mitógenos , Neoplasias Neuroepiteliales/patología , Adulto JovenRESUMEN
Purpose This phase I study investigated bortezomib in solid tumors used as a daily subcutaneous regimen. Previous regimens showed only modest activity in solid tumors which was potentially related to sub-optimal tumor penetration. We aimed at exploring if daily low dose administration of bortezomib may allow a greater and tolerable pharmacokinetic exposure which might be required for antitumor activity in solid tumors. Patients and methods This 3 + 3 design, dose escalation, monocentric study aimed at defining the maximum tolerated dose of daily low dose schedule of bortezomib. Tolerability, pharmacokinetics, pharmacodynamics, antitumor activity, biomarkers for proteasome inhibition, pre- and post-treatment tumor biopsies were also evaluated. Results A total of eighteen patients were dosed in 3 bortezomib cohorts (0.5, 0.6 and 0.7 mg/m2), with 3, 11 and 4 patients respectively. Three patients experienced dose-limiting toxicities: Grade (G) 3 Sweet's syndrome (at 0.6 mg/m2), G3 asthenia and anorexia or ataxia (2 patients at 0.7 mg/m2). The most common study drug-related adverse events (all grades) were thrombocytopenia (72%), fatigue (56%), neuropathy (50%), anorexia (44%) and rash (39%). Dose 0.6 mg/m2 of bortezomib was considered as the recommended phase II dose. A significant tumor shrinkage (-36% according to WHO criteria) was observed in one patient with heavily pre-treated GIST, and 2 minor responses (-20%) were recorded in two patients with melanoma and mesothelioma. Conclusion This daily subcutaneous regimen of bortezomib showed a dose dependent plasma exposure, evidence of target inhibition and preliminary signs of clinical activity. However, cumulative neurological toxicity of this dose-dense daily regimen might preclude its further clinical development.
Asunto(s)
Antineoplásicos/farmacocinética , Antineoplásicos/uso terapéutico , Productos Biológicos/farmacocinética , Productos Biológicos/uso terapéutico , Bortezomib/farmacocinética , Bortezomib/uso terapéutico , Neoplasias/tratamiento farmacológico , Adulto , Anciano , Antineoplásicos/efectos adversos , Productos Biológicos/efectos adversos , Bortezomib/efectos adversos , Esquema de Medicación , Femenino , Humanos , Masculino , Persona de Mediana Edad , Inhibidores de Proteasoma/efectos adversos , Inhibidores de Proteasoma/farmacocinética , Inhibidores de Proteasoma/uso terapéuticoRESUMEN
PURPOSE: Glioblastoma is the most common primary malignant brain tumor. No standard treatment exists for recurrent disease. Glioblastoma is associated with an immunosuppressive tumor microenvironment. Immune checkpoint inhibitors, including atezolizumab (anti-programmed death-ligand 1), have demonstrated clinical activity in various cancers. Here, we present the safety and efficacy of atezolizumab in patients with glioblastoma from the phase 1a PCD4989g clinical trial (NCT01375842). METHODS: Eligible patients had confirmed recurrent glioblastoma and measurable disease per RANO criteria. Atezolizumab (1200 mg) was administered intravenously every 3 weeks until progression or unacceptable toxicity. Patients were monitored for safety; response was evaluated at least every 6 weeks. Baseline biomarkers were evaluated. RESULTS: All 16 patients enrolled had received prior chemotherapy, and 50% prior bevacizumab. Ten patients (63%) experienced a treatment-related event. No treatment-related grade 4-5 events were reported. All deaths occurred due to progression or during follow-up. One patient experienced a partial response (5.3 months); 3 experienced disease stabilization. The median overall survival was 4.2 months (range 1.2 to 18.8+ months). Association between peripheral CD4+ T cells and efficacy was observed. Two patients with IDH1-mutant tumors and 1 with a POLE-mutant tumor experienced ≥ 16 months survival. CONCLUSIONS: Atezolizumab was safe and well tolerated in this group of patients with recurrent glioblastoma. Our preliminary findings suggest that biomarkers, including peripheral CD4+ T cells and hypermutated tumor status, may help guide selection of patients with recurrent glioblastoma who might receive most benefit from atezolizumab therapy, supporting further atezolizumab combination studies in glioblastoma.