Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Am J Physiol Endocrinol Metab ; 307(4): E365-73, 2014 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-24961241

RESUMEN

The goal of the current work was to profile positive (mTORC1 activation, autocrine/paracrine growth factors) and negative [AMPK, unfolded protein response (UPR)] pathways that might regulate overload-induced mTORC1 (mTOR complex 1) activation with the hypothesis that a number of negative regulators of mTORC1 will be engaged during a supraphysiological model of hypertrophy. To achieve this, mTORC1-IRS-1/2 signaling, BiP/CHOP/IRE1α, and AMPK activation were determined in rat plantaris muscle following synergist ablation (SA). SA resulted in significant increases in muscle mass of ~4% per day throughout the 21 days of the experiment. The expression of the insulin-like growth factors (IGF) were high throughout the 21st day of overload. However, IGF signaling was limited, since IRS-1 and -2 were undetectable in the overloaded muscle from day 3 to day 9. The decreases in IRS-1/2 protein were paralleled by increases in GRB10 Ser(501/503) and S6K1 Thr(389) phosphorylation, two mTORC1 targets that can destabilize IRS proteins. PKB Ser(473) phosphorylation was higher from 3-6 days, and this was associated with increased TSC2 Thr(939) phosphorylation. The phosphorylation of TSC2 (Thr1345) (an AMPK site) was also elevated, whereas phosphorylation at the other PKB site, Thr(1462), was unchanged at 6 days. In agreement with the phosphorylation of Thr(1345), SA led to activation of AMPKα1 during the initial growth phase, lasting the first 9 days before returning to baseline by day 12. The UPR markers CHOP and BiP were elevated over the first 12 days following ablation, whereas IRE1α levels decreased. These data suggest that during supraphysiological muscle loading at least three potential molecular brakes engage to downregulate mTORC1.


Asunto(s)
Complejos Multiproteicos/metabolismo , Desarrollo de Músculos/genética , Músculo Esquelético/enzimología , Músculo Esquelético/patología , Serina-Treonina Quinasas TOR/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Técnicas de Ablación , Animales , Femenino , Proteína Adaptadora GRB10/metabolismo , Hipertrofia/genética , Hipertrofia/metabolismo , Péptidos y Proteínas de Señalización Intercelular/farmacología , Diana Mecanicista del Complejo 1 de la Rapamicina , Desarrollo de Músculos/efectos de los fármacos , Músculo Esquelético/fisiología , Fosforilación , Ratas , Ratas Wistar , Proteínas Quinasas S6 Ribosómicas/metabolismo , Transducción de Señal/genética , Soporte de Peso
2.
J Lipid Res ; 51(2): 352-9, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19690335

RESUMEN

Skeletal muscle triglyceride accumulation is associated with insulin resistance in obesity. Recently, it has been suggested that alpha lipoic acid (ALA) improves insulin sensitivity by lowering triglyceride accumulation in nonadipose tissues via activation of skeletal muscle AMP-activated protein kinase (AMPK). We examined whether chronic ALA supplementation prevents muscular lipid accumulation that is associated with high-fat diets via activation of AMPK. In addition, we tested if ALA supplementation was able to improve insulin sensitivity in rats fed low- and high-fat diets (LFD, HFD). Supplementing male Wistar rats with 0.5% ALA for 8 weeks significantly reduced body weight, both on LFD and HFD (-24% LFD+ALA vs. LFD, P < 0.01, and -29% HFD+ALA vs. HFD, P < 0.001). Oil red O lipid staining revealed a 3-fold higher lipid content in skeletal muscle after HFD compared with LFD and ALA-supplemented groups (P < 0.05). ALA improved whole body glucose tolerance ( approximately 20% lower total area under the curve (AUC) in ALA supplemented groups vs. controls, P < 0.05). These effects were not mediated by increased muscular AMPK activation or ALA-induced improvement of muscular insulin sensitivity. To conclude, the prevention of HFD-induced muscular lipid accumulation and the improved whole body glucose tolerance are likely secondary effects due to the anorexic nature of ALA.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Grasas de la Dieta/farmacología , Metabolismo de los Lípidos/efectos de los fármacos , Músculos/efectos de los fármacos , Músculos/metabolismo , Ácido Tióctico/farmacología , Absorción/efectos de los fármacos , Adulto , Animales , Composición Corporal/efectos de los fármacos , Peso Corporal/efectos de los fármacos , Suplementos Dietéticos , Ingestión de Alimentos/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Glucosa/metabolismo , Prueba de Tolerancia a la Glucosa , Humanos , Insulina/metabolismo , Masculino , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Obesidad/inducido químicamente , Obesidad/metabolismo , Obesidad/fisiopatología , Obesidad/prevención & control , Ratas , Ratas Wistar , Transducción de Señal/efectos de los fármacos , Ácido Tióctico/administración & dosificación
3.
Circ Res ; 100(3): 328-41, 2007 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-17307971

RESUMEN

The AMP-activated protein kinase (AMPK) system acts as a sensor of cellular energy status that is conserved in all eukaryotic cells. It is activated by increases in the cellular AMP:ATP ratio caused by metabolic stresses that either interfere with ATP production (eg, deprivation for glucose or oxygen) or that accelerate ATP consumption (eg, muscle contraction). Activation in response to increases in AMP involves phosphorylation by an upstream kinase, the tumor suppressor LKB1. In certain cells (eg, neurones, endothelial cells, and lymphocytes), AMPK can also be activated by a Ca(2+)-dependent and AMP-independent process involving phosphorylation by an alternate upstream kinase, CaMKKbeta. Once activated, AMPK switches on catabolic pathways that generate ATP, while switching off ATP-consuming processes such as biosynthesis and cell growth and proliferation. The AMPK complex contains 3 subunits, with the alpha subunit being catalytic, the beta subunit containing a glycogen-sensing domain, and the gamma subunits containing 2 regulatory sites that bind the activating and inhibitory nucleotides AMP and ATP. Although it may have evolved to respond to metabolic stress at the cellular level, hormones and cytokines such as insulin, leptin, and adiponectin can interact with the system, and it now appears to play a key role in maintaining energy balance at the whole body level. The AMPK system may be partly responsible for the health benefits of exercise and is the target for the antidiabetic drug metformin. It is a key player in the development of new treatments for obesity, type 2 diabetes, and the metabolic syndrome.


Asunto(s)
Adenosina Monofosfato/metabolismo , Adenosina Trifosfato/metabolismo , Metabolismo Energético/fisiología , Insulina/fisiología , Complejos Multienzimáticos/fisiología , Proteínas Serina-Treonina Quinasas/fisiología , Quinasas de la Proteína-Quinasa Activada por el AMP , Proteínas Quinasas Activadas por AMP , Adipocitos/efectos de los fármacos , Adipocitos/metabolismo , Secuencia de Aminoácidos , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacología , Animales , Sitios de Unión , Calcio/fisiología , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina , Metabolismo de los Hidratos de Carbono/efectos de los fármacos , Metabolismo de los Hidratos de Carbono/fisiología , Ciclo Celular/efectos de los fármacos , Ciclo Celular/fisiología , Secuencia de Consenso , Diabetes Mellitus/tratamiento farmacológico , Diabetes Mellitus/metabolismo , Diabetes Mellitus/terapia , Metabolismo Energético/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Humanos , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Metabolismo de los Lípidos/efectos de los fármacos , Metabolismo de los Lípidos/fisiología , Metformina/farmacología , Metformina/uso terapéutico , Ratones , Ratones Noqueados , Modelos Moleculares , Datos de Secuencia Molecular , Complejos Multienzimáticos/química , Complejos Multienzimáticos/deficiencia , Complejos Multienzimáticos/efectos de los fármacos , Complejos Multienzimáticos/genética , Células Musculares/efectos de los fármacos , Células Musculares/metabolismo , Neoplasias/enzimología , Neoplasias/patología , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Consumo de Oxígeno/efectos de los fármacos , Hormonas Peptídicas/fisiología , Fosforilación , Procesamiento Proteico-Postraduccional/fisiología , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/deficiencia
4.
Biochem J ; 416(1): 1-14, 2008 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-18774945

RESUMEN

LKB1 was discovered as a tumour suppressor mutated in Peutz-Jeghers syndrome, and is a gene involved in cell polarity as well as an upstream protein kinase for members of the AMP-activated protein kinase family. We report that mammals express two splice variants caused by alternate usage of 3'-exons. LKB1(L) is the previously described form, while LKB1(S) is a novel form in which the last 63 residues are replaced by a unique 39-residue sequence lacking known phosphorylation (Ser(431)) and farnesylation (Cys(433)) sites. Both isoforms are widely expressed in rodent and human tissues, although LKB1(S) is particularly abundant in haploid spermatids in the testis. Male mice in which expression of Lkb1(S) is knocked out are sterile, with the number of mature spermatozoa in the epididymis being dramatically reduced, and those spermatozoa that are produced have heads with an abnormal morphology and are non-motile. These results identify a previously undetected variant of LKB1, and suggest that it has a crucial role in spermiogenesis and male fertility.


Asunto(s)
Proteínas Serina-Treonina Quinasas/genética , Espermatogénesis/fisiología , Quinasas de la Proteína-Quinasa Activada por el AMP , Proteínas Quinasas Activadas por AMP , Secuencia de Aminoácidos , Animales , Western Blotting , Activación Enzimática , Células HeLa , Humanos , Infertilidad Masculina/genética , Isoenzimas/genética , Masculino , Ratones , Ratones Noqueados , Microscopía Electrónica de Rastreo , Datos de Secuencia Molecular , Complejos Multienzimáticos/metabolismo , Proteínas Serina-Treonina Quinasas/aislamiento & purificación , Proteínas Serina-Treonina Quinasas/metabolismo , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Ratas Wistar , Alineación de Secuencia , Espermátides/enzimología , Testículo/ultraestructura
5.
Mol Biol Cell ; 15(7): 3181-95, 2004 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15133132

RESUMEN

The muscle isoform of clathrin heavy chain, CHC22, has 85% sequence identity to the ubiquitously expressed CHC17, yet its expression pattern and function appear to be distinct from those of well-characterized clathrin-coated vesicles. In mature muscle CHC22 is preferentially concentrated at neuromuscular and myotendinous junctions, suggesting a role at sarcolemmal contacts with extracellular matrix. During myoblast differentiation, CHC22 expression is increased, initially localized with desmin and nestin and then preferentially segregated to the poles of fused myoblasts. CHC22 expression is also increased in regenerating muscle fibers with the same time course as embryonic myosin, indicating a role in muscle repair. CHC22 binds to sorting nexin 5 through a coiled-coil domain present in both partners, which is absent in CHC17 and coincides with the region on CHC17 that binds the regulatory light-chain subunit. These differential binding data suggest a mechanism for the distinct functions of CHC22 relative to CHC17 in membrane traffic during muscle development, repair, and at neuromuscular and myotendinous junctions.


Asunto(s)
Proteínas Portadoras/metabolismo , Cadenas Pesadas de Clatrina/metabolismo , Clatrina/metabolismo , Desarrollo de Músculos , Proteínas Musculares/metabolismo , Músculo Esquelético/fisiología , Unión Neuromuscular/metabolismo , Regeneración , Animales , Línea Celular , Cadenas Pesadas de Clatrina/análisis , Cadenas Pesadas de Clatrina/genética , Proteínas Cardiotóxicas de Elápidos/farmacología , Desmina/análisis , Desmina/metabolismo , Humanos , Integrinas/análisis , Integrinas/metabolismo , Proteínas de Filamentos Intermediarios/análisis , Proteínas de Filamentos Intermediarios/metabolismo , Proteínas Musculares/análisis , Proteínas Musculares/genética , Músculo Esquelético/crecimiento & desarrollo , Músculo Esquelético/metabolismo , Proteínas del Tejido Nervioso/análisis , Proteínas del Tejido Nervioso/metabolismo , Nestina , Unión Neuromuscular/química , Transporte de Proteínas , Nexinas de Clasificación , Tendones/inmunología , Tendones/metabolismo , Técnicas del Sistema de Dos Híbridos , Proteínas de Transporte Vesicular
6.
PLoS One ; 8(10): e77200, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24146969

RESUMEN

Performing exercise in a glycogen depleted state increases skeletal muscle lipid utilization and the transcription of genes regulating mitochondrial ß-oxidation. Potential candidates for glycogen-mediated metabolic adaptation are the peroxisome proliferator activated receptor (PPAR) coactivator-1α (PGC-1α) and the transcription factor/nuclear receptor PPAR-∂. It was therefore the aim of the present study to examine whether acute exercise with or without glycogen manipulation affects PGC-1α and PPAR-∂ function in rodent skeletal muscle. Twenty female Wistar rats were randomly assigned to 5 experimental groups (n = 4): control [CON]; normal glycogen control [NG-C]; normal glycogen exercise [NG-E]; low glycogen control [LG-C]; and low glycogen exercise [LG-E]). Gastrocnemius (GTN) muscles were collected immediately following exercise and analyzed for glycogen content, PPAR-∂ activity via chromatin immunoprecipitation (ChIP) assays, AMPK α1/α2 kinase activity, and the localization of AMPK and PGC-1α. Exercise reduced muscle glycogen by 47 and 75% relative to CON in the NG-E and LG-E groups, respectively. Exercise that started with low glycogen (LG-E) finished with higher AMPK-α2 activity (147%, p<0.05), nuclear AMPK-α2 and PGC-1α, but no difference in AMPK-α1 activity compared to CON. In addition, PPAR-∂ binding to the CPT1 promoter was significantly increased only in the LG-E group. Finally, cell reporter studies in contracting C2C12 myotubes indicated that PPAR-∂ activity following contraction is sensitive to glucose availability, providing mechanistic insight into the association between PPAR-∂ and glycogen content/substrate availability. The present study is the first to examine PPAR-∂ activity in skeletal muscle in response to an acute bout of endurance exercise. Our data would suggest that a factor associated with muscle contraction and/or glycogen depletion activates PPAR-∂ and initiates AMPK translocation in skeletal muscle in response to exercise.


Asunto(s)
Glucógeno/metabolismo , Músculo Esquelético/metabolismo , Receptores Activados del Proliferador del Peroxisoma/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Línea Celular , Activación Enzimática , Femenino , Glucosa/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Condicionamiento Físico Animal , Ratas , Factores de Transcripción/metabolismo
7.
Mol Biol Cell ; 21(15): 2578-88, 2010 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-20534808

RESUMEN

Lafora progressive myoclonus epilepsy is a fatal neurodegenerative disorder caused by defects in the function of at least two proteins: laforin, a dual-specificity protein phosphatase, and malin, an E3-ubiquitin ligase. In this study, we report that a functional laforin-malin complex promotes the ubiquitination of AMP-activated protein kinase (AMPK), a serine/threonine protein kinase that acts as a sensor of cellular energy status. This reaction occurs when any of the three AMPK subunits (alpha, beta, and gamma) are expressed individually in the cell, and it also occurs on AMPK beta when it is part of a heterotrimeric complex. We also report that the laforin-malin complex promotes the formation of K63-linked ubiquitin chains, which are not involved in proteasome degradation. On the contrary, this modification increases the steady-state levels of at least AMPK beta subunit, possibly because it leads to the accumulation of this protein into inclusion bodies. These results suggest that the modification introduced by the laforin-malin complex could affect the subcellular distribution of AMPK beta subunits.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Proteínas Portadoras/metabolismo , Enfermedad de Lafora/enzimología , Lisina/metabolismo , Complejos Multiproteicos/metabolismo , Proteínas Tirosina Fosfatasas no Receptoras/metabolismo , Ubiquitina/metabolismo , Animales , Línea Celular , Humanos , Leupeptinas/farmacología , Ratones , Complejo de la Endopetidasa Proteasomal/metabolismo , Inhibidores de Proteasoma , Multimerización de Proteína/efectos de los fármacos , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Estabilidad Proteica/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , Especificidad por Sustrato/efectos de los fármacos , Ubiquitina-Proteína Ligasas , Ubiquitinación/efectos de los fármacos
8.
Cell Metab ; 11(6): 554-65, 2010 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-20519126

RESUMEN

A wide variety of agents activate AMPK, but in many cases the mechanisms remain unclear. We generated isogenic cell lines stably expressing AMPK complexes containing AMP-sensitive (wild-type, WT) or AMP-insensitive (R531G) gamma2 variants. Mitochondrial poisons such as oligomycin and dinitrophenol only activated AMPK in WT cells, as did AICAR, 2-deoxyglucose, hydrogen peroxide, metformin, phenformin, galegine, troglitazone, phenobarbital, resveratrol, and berberine. Excluding AICAR, all of these also inhibited cellular energy metabolism, shown by increases in ADP:ATP ratio and/or by decreases in cellular oxygen uptake measured using an extracellular flux analyzer. By contrast, A769662, the Ca(2+) ionophore, A23187, osmotic stress, and quercetin activated both variants to varying extents. A23187 and osmotic stress also increased cytoplasmic Ca(2+), and their effects were inhibited by STO609, a CaMKK inhibitor. Our approaches distinguish at least six different mechanisms for AMPK activation and confirm that the widely used antidiabetic drug metformin activates AMPK by inhibiting mitochondrial respiration.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Proteínas Quinasas Activadas por AMP/antagonistas & inhibidores , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Antibacterianos/farmacología , Bencimidazoles/farmacología , Calcimicina/farmacología , Calcio/metabolismo , Línea Celular , Dinitrofenoles/farmacología , Metabolismo Energético , Activación Enzimática , Humanos , Hipoglucemiantes/farmacología , Metformina/farmacología , Naftalimidas/farmacología , Oligomicinas/farmacología , Fosforilación , Subunidades de Proteína/metabolismo
9.
J Biol Chem ; 282(22): 16117-25, 2007 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-17403675

RESUMEN

Mammalian AMP-activated protein kinase is a serine/threonine protein kinase that acts as a sensor of cellular energy status. AMP-activated protein kinase is a heterotrimer of three different subunits, i.e. alpha, beta, and gamma, with alpha being the catalytic subunit and beta and gamma having regulatory roles. Although several studies have defined different domains in alpha and beta involved in the interaction with the other subunits of the complex, little is known about the regions of the gamma subunits involved in these interactions. To study this, we have made sequential deletions from the N termini of the gamma subunit isoforms and studied the interactions with alpha and beta subunits, both by two-hybrid analysis and by co-immunoprecipitation. Our results suggest that a conserved region of 20-25 amino acids in gamma1, gamma2, and gamma3, immediately N-terminal to the Bateman domains, is required for the formation of a functional, active alphabetagamma complex. This region is required for the interaction with the beta subunits. The interaction between the alpha and gamma subunits does not require this region and occurs instead within the Bateman domains of the gamma subunit, although the alpha-gamma interaction does appear to stabilize the beta-gamma interaction. In addition, sequential deletions from the C termini of the gamma subunits indicate that deletion of any of the CBS (cystathionine beta-synthase) motifs prevents the formation of a functional complex with the alpha and beta subunits.


Asunto(s)
Proteínas Quinasas/metabolismo , Proteínas Quinasas Activadas por AMP , Secuencias de Aminoácidos/genética , Dominio Catalítico/genética , Células HeLa , Humanos , Complejos Multienzimáticos , Unión Proteica/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Quinasas/genética , Proteínas Serina-Treonina Quinasas , Estructura Terciaria de Proteína/genética , Eliminación de Secuencia/genética , Técnicas del Sistema de Dos Híbridos
10.
Diabetes ; 56(8): 2078-84, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17513706

RESUMEN

Activation of AMP-activated protein kinase (AMPK) in rodent muscle by exercise, metformin, 5-aminoimidazole-4-carboxamide 1-beta-d-ribofuranoside (AICAR), and adiponectin increases glucose uptake. The aim of this study was to determine whether AICAR stimulates muscle glucose uptake in humans. We studied 29 healthy men (aged 26 +/- 8 years, BMI 25 +/- 4 kg/m(2) [mean +/- SD]). Rates of muscle 2-deoxyglucose (2DG) uptake were determined by measuring accumulation of total muscle 2DG (2DG and 2DG-6-phosphate) during a primed, continuous 2DG infusion. The effects of AICAR and exercise on muscle AMPK activity/phosphorylation and 2DG uptake were determined. Whole-body glucose disposal was compared before and during AICAR with the euglycemic-hyperinsulinemic clamp. Muscle 2DG uptake was linear over 9 h (R(2) = 0.88 +/- 0.09). After 3 h, 2DG uptake increased 2.1 +/- 0.8- and 4.7 +/- 1.7-fold in response to AICAR or bicycle exercise, respectively. AMPK alpha(1) and alpha(2) activity or AMPK phosphorylation was unchanged after 20 min or 3 h of AICAR, but AMPK phosphorylation significantly increased immediately and 3 h after bicycle exercise. AICAR significantly increased phosphorylation of extracellular signal-regulated kinase 1/2, but phosphorylation of beta-acetyl-CoA carboxylase, glycogen synthase, and protein kinase B or insulin receptor substrate-1 level was unchanged. Mean whole-body glucose disposal increased by 7% with AICAR from 9.3 +/- 0.6 to 10 +/- 0.6 mg x kg(-1) x min(-1) (P < 0.05). In healthy people, AICAR acutely stimulates muscle 2DG uptake with a minor effect on whole-body glucose disposal.


Asunto(s)
Aminoimidazol Carboxamida/análogos & derivados , Desoxiglucosa/metabolismo , Desoxiglucosa/farmacocinética , Salud , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Ribonucleósidos/farmacología , Proteínas Quinasas Activadas por AMP , Adulto , Aminoimidazol Carboxamida/administración & dosificación , Aminoimidazol Carboxamida/farmacología , Biopsia , Glucemia/metabolismo , Desoxiglucosa/administración & dosificación , Glucógeno/metabolismo , Hormonas/sangre , Humanos , Insulina/sangre , Isoenzimas/metabolismo , Ácido Láctico/sangre , Masculino , Complejos Multienzimáticos/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Ribonucleósidos/administración & dosificación , Factores de Tiempo
11.
Proc Natl Acad Sci U S A ; 102(20): 7209-14, 2005 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-15883369

RESUMEN

In humans, there are two isoforms each of clathrin heavy chain (CHC17 and CHC22) and light chain (LCa and LCb) subunits, all encoded by separate genes. CHC17 forms the ubiquitous clathrin-coated vesicles that mediate membrane traffic. CHC22 is implicated in specialized membrane organization in skeletal muscle. CHC17 is bound and regulated by LCa and LCb, whereas CHC22 does not functionally interact with either light chain. The imbalanced interactions between clathrin subunit isoforms suggest a distinct evolutionary history for each isoform pair. Phylogenetic and sequence analysis placed both heavy and light chain gene duplications during chordate evolution, 510-600 million years ago. Genes encoding CHC22 orthologues were found in several vertebrate species, with only a pseudogene present in mice. Multiple paralogons surrounding the CHC genes (CLTC and CLTD) were identified, evidence that genomic or large-scale gene duplication produced the two CHC isoforms. In contrast, clathrin light chain genes (CLTA and CLTB) apparently arose by localized duplication, within 1-11 million years of CHC gene duplication. Analysis of sequence divergence patterns suggested that structural features of the CHCs were maintained after gene duplication, but new interactions with regulatory proteins evolved for the CHC22 isoform. Thus, independent mechanisms of gene duplication expanded clathrin functions, concomitant with development of neuromuscular sophistication in chordates.


Asunto(s)
Cordados , Cadenas Pesadas de Clatrina/genética , Cadenas Ligeras de Clatrina/genética , Evolución Molecular , Duplicación de Gen , Filogenia , Animales , Teorema de Bayes , Mapeo Cromosómico , Cadenas Pesadas de Clatrina/metabolismo , Cadenas Ligeras de Clatrina/metabolismo , Biología Computacional , Variación Genética , Humanos , Modelos Genéticos , Isoformas de Proteínas
12.
Traffic ; 5(3): 129-39, 2004 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15086789

RESUMEN

Skeletal muscle tissue is made up of highly organized multinuclear cells. The internal organization of the muscle cell is dictated by the necessary regular arrangement of repeated units within the protein myofibrils that mediate muscle contraction. Skeletal muscle cells have the usual membrane traffic pathways for partitioning newly synthesized proteins, internalizing cell surface receptors for hormones and nutrients, and mediating membrane repair. However, in muscle, these pathways must be further specialized to deal with targeting to and organizing muscle-specific membrane structures, satisfying the unique metabolic requirements of muscle and meeting the high demand for membrane repair in a tissue that is constantly under mechanical stress. Specialized membrane traffic pathways in muscle also play a role in the formation of muscle through fusion of myoblast membranes and the development of internal muscle-specific membrane structures during myogenesis and regeneration. It has recently become apparent that muscle-specific isoforms of proteins that are known to mediate ubiquitous membrane traffic pathways, as well as novel muscle-specific proteins, are involved in tissue-specific aspects of muscle membrane traffic. Here we describe the specialized membrane structures of skeletal muscle, how these are developed, maintained and repaired by specialized and generic membrane traffic pathways, and how defects in these pathways result in muscle disease.


Asunto(s)
Membrana Celular/metabolismo , Músculo Esquelético/citología , Músculo Esquelético/metabolismo , Animales , Transporte Biológico , Membrana Celular/química , Humanos , Fusión de Membrana , Proteínas de la Membrana/metabolismo , Músculo Esquelético/patología , Sarcolema/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA