Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Biophys Physicobiol ; 21(2): e210015, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39206130

RESUMEN

Mycoplasma mobile is a parasitic bacterium that forms gliding machinery on the cell pole and glides on a solid surface in the direction of the cell pole. The gliding machinery consists of both internal and surface structures. The internal structure is divided into a bell at the front and chain structure extending from the bell. In this study, the internal structures prepared under several conditions were analyzed using negative-staining electron microscopy and electron tomography. The chains were constructed by linked motors containing two complexes similar to ATP synthase. A cylindrical spacer with a maximum diameter of 6 nm and a height of 13 nm, and anonymous linkers with a diameter of 0.9-8.3 nm and length of 14.7±6.9 nm were found between motors. The bell is bowl-shaped and features a honeycomb surface with a periodicity of 8.4 nm. The chains of the motor are connected to the rim of the bell through a wedge-shaped structure. These structures may play roles in the assembly and cooperation of gliding machinery units.

2.
Methods Mol Biol ; 2646: 311-319, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36842125

RESUMEN

Isolating functional units from large insoluble protein complexes are a complex but valuable approach for quantitative and structural analysis. Mycoplasma mobile, a gliding bacterium, contains a large insoluble protein complex called gliding machinery. The machinery contains several chain structures formed by motors that are evolutionarily related to the F1-ATPase. Recently, we developed a method to purify functional motors and their chain structures using Triton X-100 and a high salt concentration buffer and resolved their structures using electron microscopy. In this chapter, we describe the processes of purification and structural analysis of functional motors for the gliding of M. mobile using negative-staining electron microscopy.


Asunto(s)
Mycoplasma , Mycoplasma/metabolismo , Microscopía Electrónica , Adenosina Trifosfatasas/metabolismo , Proteínas Bacterianas/metabolismo
3.
mBio ; 12(4): e0141421, 2021 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-34281395

RESUMEN

Mycoplasma mobile, a fish pathogen, exhibits gliding motility using ATP hydrolysis on solid surfaces, including animal cells. The gliding machinery can be divided into surface and internal structures. The internal structure of the motor is composed of 28 so-called "chains" that are each composed of 17 repeating protein units called "particles." These proteins include homologs of the catalytic α and ß subunits of F1-ATPase. In this study, we isolated the particles and determined their structures using negative-staining electron microscopy and high-speed atomic force microscopy. The isolated particles were composed of five proteins, MMOB1660 (α-subunit homolog), -1670 (ß-subunit homolog), -1630, -1620, and -4530, and showed ATP hydrolyzing activity. The two-dimensional (2D) structure, with dimensions of 35 and 26 nm, showed a dimer of hexameric ring approximately 12 nm in diameter, resembling F1-ATPase catalytic (αß)3. We isolated the F1-like ATPase unit, which is composed of MMOB1660, -1670, and -1630. Furthermore, we isolated the chain and analyzed the three-dimensional (3D) structure, showing that dimers of mushroom-like structures resembling F1-ATPase were connected and aligned along the dimer axis at 31-nm intervals. An atomic model of F1-ATPase catalytic (αß)3 from Bacillus PS3 was successfully fitted to each hexameric ring of the mushroom-like structure. These results suggest that the motor for M. mobile gliding shares an evolutionary origin with F1-ATPase. Based on the obtained structure, we propose possible force transmission processes in the gliding mechanism. IMPORTANCE F1Fo-ATPase, a rotary ATPase, is widespread in the membranes of mitochondria, chloroplasts, and bacteria and converts ATP energy with a proton motive force across the membrane by its physical rotation. Homologous protein complexes play roles in ion and protein transport. Mycoplasma mobile, a pathogenic bacterium, was recently suggested to have a special motility system evolutionarily derived from F1-ATPase. The present study isolated the protein complex from Mycoplasma cells and supported this conclusion by clarifying the detailed structures containing common and novel features as F1-ATPase relatives.


Asunto(s)
Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Mycoplasma/enzimología , Mycoplasma/metabolismo , Adenosina Trifosfatasas/genética , Microscopía de Fuerza Atómica/métodos , Microscopía Electrónica/métodos , Movimiento , Mycoplasma/genética , Conformación Proteica , ATPasas de Translocación de Protón/química , ATPasas de Translocación de Protón/genética , ATPasas de Translocación de Protón/metabolismo
4.
mBio ; 12(3): e0004021, 2021 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-34044587

RESUMEN

Mycoplasma mobile, a parasitic bacterium, glides on solid surfaces, such as animal cells and glass, by a special mechanism. This process is driven by the force generated through ATP hydrolysis on an internal structure. However, the spatial and temporal behaviors of the internal structures in living cells are unclear. In this study, we detected the movements of the internal structure by scanning cells immobilized on a glass substrate using high-speed atomic force microscopy (HS-AFM). By scanning the surface of a cell, we succeeded in visualizing particles, 2 nm in height and aligned mostly along the cell axis with a pitch of 31.5 nm, consistent with previously reported features based on electron microscopy. Movements of individual particles were then analyzed by HS-AFM. In the presence of sodium azide, the average speed of particle movements was reduced, suggesting that movement is linked to ATP hydrolysis. Partial inhibition of the reaction by sodium azide enabled us to analyze particle behavior in detail, showing that the particles move 9 nm right, relative to the gliding direction, and 2 nm into the cell interior in 330 ms and then return to their original position, based on ATP hydrolysis. IMPORTANCE The Mycoplasma genus contains bacteria generally parasitic to animals and plants. Some Mycoplasma species form a protrusion at a pole, bind to solid surfaces, and glide by a special mechanism linked to their infection and survival. The special machinery for gliding can be divided into surface and internal structures that have evolved from rotary motors represented by ATP synthases. This study succeeded in visualizing the real-time movements of the internal structure by scanning from the outside of the cell using an innovative high-speed atomic force microscope and then analyzing their behaviors.


Asunto(s)
Microscopía de Fuerza Atómica/métodos , Mycoplasma/fisiología , Mycoplasma/ultraestructura , Vidrio , Movimiento , Propiedades de Superficie
5.
mBio ; 10(6)2019 12 24.
Artículo en Inglés | MEDLINE | ID: mdl-31874918

RESUMEN

Mycoplasma mobile, a fish pathogen, glides on solid surfaces by repeated catch, pull, and release of sialylated oligosaccharides by a unique mechanism based on ATP energy. The gliding machinery is composed of huge surface proteins and an internal "jellyfish"-like structure. Here, we elucidated the detailed three-dimensional structures of the machinery by electron cryotomography. The internal "tentacle"-like structure hydrolyzed ATP, which was consistent with the fact that the paralogs of the α- and ß-subunits of F1-ATPase are at the tentacle structure. The electron microscopy suggested conformational changes of the tentacle structure depending on the presence of ATP analogs. The gliding machinery was isolated and showed that the binding activity to sialylated oligosaccharide was higher in the presence of ADP than in the presence of ATP. Based on these results, we proposed a model to explain the mechanism of M. mobile gliding.IMPORTANCE The genus Mycoplasma is made up of the smallest parasitic and sometimes commensal bacteria; Mycoplasma pneumoniae, which causes human "walking pneumonia," is representative. More than ten Mycoplasma species glide on host tissues by novel mechanisms, always in the direction of the distal side of the machinery. Mycoplasma mobile, the fastest species in the genus, catches, pulls, and releases sialylated oligosaccharides (SOs), the carbohydrate molecules also targeted by influenza viruses, by means of a specific receptor and using ATP hydrolysis for energy. Here, the architecture of the gliding machinery was visualized three dimensionally by electron cryotomography (ECT), and changes in the structure and binding activity coupled to ATP hydrolysis were discovered. Based on the results, a refined mechanism was proposed for this unique motility.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Mycoplasma/citología , Mycoplasma/enzimología , Ácido N-Acetilneuramínico/metabolismo , Proteínas Bacterianas/metabolismo , Transporte Iónico , Proteínas de la Membrana/metabolismo , Microscopía Electrónica , Microscopía de Contraste de Fase , Movimiento , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA