Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Natl Cancer Inst ; 84(8): 592-601, 1992 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-1556770

RESUMEN

BACKGROUND: Ovarian surface epithelial cells undergo several rounds of division to repair the wound created by follicular rupture at the time of ovulation. This cyclical requirement for cell division, when not interrupted by the long anovulatory rest periods that occur during pregnancy and lactation, may contribute to the development of ovarian cancer. PURPOSE AND METHODS: To test this hypothesis, we isolated rat ovarian surface epithelial cells from 10 adult female Fisher rats, initiated two mixed-population and seven clonal cell lines, and repeatedly subcultured these cells in vitro for more than 20 passages. We then tested them for the acquisition of the following four features associated with transformation: 1) the loss of contact inhibition, 2) the capacity for substrate-independent growth, 3) the ability to form tumors when injected subcutaneously and/or intraperitoneally into athymic mice, and 4) cytogenetic abnormalities. RESULTS: Loss of contact inhibition was observed in all nine late-passage cell lines. Six of the nine late-passage, but none of the early-passage, cell lines tested exhibited a capacity for substrate-independent growth that was augmented in a dose-dependent manner by epidermal growth factor. Two late-passage cell lines (clone 2 and mixed-population 2) generated tumors in athymic BALB/c mice within 3 weeks following subcutaneous injection of 5 x 10(6) cells, whereas similar numbers of early-passage cells from the same cell lines failed to generate palpable tumors. Late-passage clone 7 cells were tumorigenic when 5 x 10(7) cells were injected intraperitoneally. Two of the cell lines analyzed exhibited alterations involving losses of part or all of one member of the chromosome 5 pair. Clone 2 possessed an interstitial deletion, del(5)(q21.3q24), consistent with the loss of an uncloned putative tumor suppressor gene at 5q22q23 previously reported to reside near the loci for the interferon alpha, interferon beta, and c-jun genes. Early-passage clone 7 cells exhibited chromosome 5 monosomy, while late-passage cells contained one normal chromosome 5 and a derivative (5q12q). Southern analysis of the three cell lines revealed no consistent loss of loci for the interferon and c-jun genes, although early-passage clone 7 cells had one half the gene copy number for the interferon beta and c-jun genes and both early- and late-passage clone 7 cells lacked DNA sequences hybridizing with the probe for interferon alpha. CONCLUSION: This pattern of passage-dependent spontaneous transformation of rat ovarian surface epithelial cells in vitro supports the hypothesis that repetitious ovulation contributes to the etiology of human ovarian cancer.


Asunto(s)
Transformación Celular Neoplásica/genética , Neoplasias Ováricas/genética , Ovulación/fisiología , Animales , Southern Blotting , División Celular , Transformación Celular Neoplásica/patología , Deleción Cromosómica , Células Epiteliales , Femenino , Técnicas In Vitro , Cariotipificación , Ratones , Ratones Desnudos , Trasplante de Neoplasias , Neoplasias Ováricas/patología , Neoplasias Ováricas/fisiopatología , Ratas , Ratas Endogámicas F344 , Transformación Genética
2.
Cancer Res ; 53(16): 3771-5, 1993 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-8339290

RESUMEN

Recent reports suggest that expression of an activated c-Ha-ras oncogene is associated with cisplatin resistance in NIH-3T3 fibroblasts. To investigate the generality of these observations, cisplatin cytotoxicity was determined in a series of clonal Rat-1 fibroblast and rat ovarian surface epithelial (ROSE) cell lines carrying a zinc-inducible metallothionein-RAST24 fusion gene, MTRAST24. Cisplatin sensitivity in RAS-transformed fibroblast sublines did not differ from parental controls. Induction of mutant RAST24 expression by zinc sulfate did not affect the cisplatin sensitivity of individual cell lines. Expression of mutant p21Ha-RAS varied more than 40-fold in these fibroblast sublines. Similarly, there was no difference in cisplatin sensitivity between parental ROSE controls, neomycin phosphotransferase transfected controls, or MTRAST24 transfectants. Finally, the cisplatin sensitivity of RAS-transformed ROSE cells was similar to that of spontaneously transformed ROSE cells. Overall, these observations suggest that there is little relationship between mutant ras expression and cisplatin sensitivity in rat epithelial and fibroblast cell lines.


Asunto(s)
Transformación Celular Neoplásica/patología , Cisplatino , Fibroblastos/patología , Expresión Génica , Genes ras/genética , Ovario/patología , Mutación Puntual/genética , Animales , Transformación Celular Neoplásica/genética , Resistencia a Medicamentos/genética , Femenino , Ratas , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA