Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 143
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Am J Hum Genet ; 110(5): 809-825, 2023 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-37075751

RESUMEN

Heterozygous pathogenic variants in POLR1A, which encodes the largest subunit of RNA Polymerase I, were previously identified as the cause of acrofacial dysostosis, Cincinnati-type. The predominant phenotypes observed in the cohort of 3 individuals were craniofacial anomalies reminiscent of Treacher Collins syndrome. We subsequently identified 17 additional individuals with 12 unique heterozygous variants in POLR1A and observed numerous additional phenotypes including neurodevelopmental abnormalities and structural cardiac defects, in combination with highly prevalent craniofacial anomalies and variable limb defects. To understand the pathogenesis of this pleiotropy, we modeled an allelic series of POLR1A variants in vitro and in vivo. In vitro assessments demonstrate variable effects of individual pathogenic variants on ribosomal RNA synthesis and nucleolar morphology, which supports the possibility of variant-specific phenotypic effects in affected individuals. To further explore variant-specific effects in vivo, we used CRISPR-Cas9 gene editing to recapitulate two human variants in mice. Additionally, spatiotemporal requirements for Polr1a in developmental lineages contributing to congenital anomalies in affected individuals were examined via conditional mutagenesis in neural crest cells (face and heart), the second heart field (cardiac outflow tract and right ventricle), and forebrain precursors in mice. Consistent with its ubiquitous role in the essential function of ribosome biogenesis, we observed that loss of Polr1a in any of these lineages causes cell-autonomous apoptosis resulting in embryonic malformations. Altogether, our work greatly expands the phenotype of human POLR1A-related disorders and demonstrates variant-specific effects that provide insights into the underlying pathogenesis of ribosomopathies.


Asunto(s)
Anomalías Craneofaciales , Disostosis Mandibulofacial , Humanos , Ratones , Animales , Disostosis Mandibulofacial/genética , Apoptosis , Mutagénesis , Ribosomas/genética , Fenotipo , Cresta Neural/patología , Anomalías Craneofaciales/genética , Anomalías Craneofaciales/patología
2.
Bioessays ; 46(1): e2300054, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38037292

RESUMEN

The human fovea is known for its distinctive pit-like appearance, which results from the displacement of retinal layers superficial to the photoreceptors cells. The photoreceptors are found at high density within the foveal region but not the surrounding retina. Efforts to elucidate the mechanisms responsible for these unique features have ruled out cell death as an explanation for pit formation and changes in cell proliferation as the cause of increased photoreceptor density. These findings have led to speculation that mechanical forces acting within and on the retina during development underly the formation of foveal architecture. Here we review eye morphogenesis and retinal remodeling in human embryonic development. Our meta-analysis of the literature suggests that fovea formation is a protracted process involving dynamic changes in ocular shape that start early and continue throughout most of human embryonic development. From these observations, we propose a new model for fovea development.


Asunto(s)
Fóvea Central , Retina , Humanos , Fóvea Central/fisiología , Células Fotorreceptoras
3.
PLoS Genet ; 19(8): e1010854, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37639467

RESUMEN

Transcription of ribosomal RNA (rRNA) by RNA Polymerase (Pol) I in the nucleolus is necessary for ribosome biogenesis, which is intimately tied to cell growth and proliferation. Perturbation of ribosome biogenesis results in tissue specific disorders termed ribosomopathies in association with alterations in nucleolar structure. However, how rRNA transcription and ribosome biogenesis regulate nucleolar structure during normal development and in the pathogenesis of disease remains poorly understood. Here we show that homozygous null mutations in Pol I subunits required for rRNA transcription and ribosome biogenesis lead to preimplantation lethality. Moreover, we discovered that Polr1a-/-, Polr1b-/-, Polr1c-/- and Polr1d-/- mutants exhibit defects in the structure of their nucleoli, as evidenced by a decrease in number of nucleolar precursor bodies and a concomitant increase in nucleolar volume, which results in a single condensed nucleolus. Pharmacological inhibition of Pol I in preimplantation and midgestation embryos, as well as in hiPSCs, similarly results in a single condensed nucleolus or fragmented nucleoli. We find that when Pol I function and rRNA transcription is inhibited, the viscosity of the granular compartment of the nucleolus increases, which disrupts its phase separation properties, leading to a single condensed nucleolus. However, if a cell progresses through mitosis, the absence of rRNA transcription prevents reassembly of the nucleolus and manifests as fragmented nucleoli. Taken together, our data suggests that Pol I function and rRNA transcription are required for maintaining nucleolar structure and integrity during development and in the pathogenesis of disease.


Asunto(s)
Nucléolo Celular , División del Núcleo Celular , Nucléolo Celular/genética , Ciclo Celular , Proliferación Celular , ARN Polimerasa I/genética , ARN Ribosómico/genética
4.
Semin Cell Dev Biol ; 138: 54-67, 2023 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-35277330

RESUMEN

Epithelial to mesenchymal transition (EMT) is a well-defined cellular process that was discovered in chicken embryos and described as "epithelial to mesenchymal transformation" [1]. During EMT, epithelial cells lose their epithelial features and acquire mesenchymal character with migratory potential. EMT has subsequently been shown to be essential for both developmental and pathological processes including embryo morphogenesis, wound healing, tissue fibrosis and cancer [2]. During the past 5 years, interest and study of EMT especially in cancer biology have increased exponentially due to the implied role of EMT in multiple aspects of malignancy such as cell invasion, survival, stemness, metastasis, therapeutic resistance and tumor heterogeneity [3]. Since the process of EMT in embryogenesis and cancer progression shares similar phenotypic changes, core transcription factors and molecular mechanisms, it has been proposed that the initiation and development of carcinoma could be attributed to abnormal activation of EMT factors usually required for normal embryo development. Therefore, developmental EMT mechanisms, whose timing, location, and tissue origin are strictly regulated, could prove useful for uncovering new insights into the phenotypic changes and corresponding gene regulatory control of EMT under pathological conditions. In this review, we initially provide an overview of the phenotypic and molecular mechanisms involved in EMT and discuss the newly emerging concept of epithelial to mesenchymal plasticity (EMP). Then we focus on our current knowledge of a classic developmental EMT event, neural crest cell (NCC) delamination, highlighting key differences in our understanding of NCC EMT between mammalian and non-mammalian species. Lastly, we highlight available tools and future directions to advance our understanding of mammalian NCC EMT.


Asunto(s)
Transición Epitelial-Mesenquimal , Neoplasias , Animales , Embrión de Pollo , Transición Epitelial-Mesenquimal/genética , Cresta Neural , Adhesión Celular , Desarrollo Embrionario/genética , Neoplasias/patología , Mamíferos
5.
Semin Cell Dev Biol ; 136: 49-63, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-35422389

RESUMEN

Ribosomes are macromolecular machines that are globally required for the translation of all proteins in all cells. Ribosome biogenesis, which is essential for cell growth, proliferation and survival, commences with transcription of a variety of RNAs by RNA Polymerases I and III. RNA Polymerase I (Pol I) transcribes ribosomal RNA (rRNA), while RNA Polymerase III (Pol III) transcribes 5S ribosomal RNA and transfer RNAs (tRNA) in addition to a wide variety of small non-coding RNAs. Interestingly, despite their global importance, disruptions in Pol I and Pol III function result in tissue-specific developmental disorders, with craniofacial anomalies and leukodystrophy/neurodegenerative disease being among the most prevalent. Furthermore, pathogenic variants in genes encoding subunits shared between Pol I and Pol III give rise to distinct syndromes depending on whether Pol I or Pol III function is disrupted. In this review, we discuss the global roles of Pol I and III transcription, the consequences of disruptions in Pol I and III transcription, disorders arising from pathogenic variants in Pol I and Pol III subunits, and mechanisms underpinning their tissue-specific phenotypes.


Asunto(s)
Enfermedades Neurodegenerativas , ARN Polimerasa I , Humanos , ARN Polimerasa I/genética , ARN Polimerasa I/metabolismo , Enfermedades Neurodegenerativas/metabolismo , ARN Polimerasa III/genética , ARN Polimerasa III/metabolismo , Ribosomas/metabolismo , Ciclo Celular , Transcripción Genética
6.
Development ; 149(12)2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35762670

RESUMEN

Ribosomal RNA (rRNA) transcription and ribosome biogenesis are global processes required for growth and proliferation of all cells, yet perturbation of these processes in vertebrates leads to tissue-specific defects termed ribosomopathies. Mutations in rRNA transcription and processing proteins often lead to craniofacial anomalies; however, the cellular and molecular reasons for these defects are poorly understood. Therefore, we examined the function of the most abundant nucleolar phosphoprotein, Nucleolin (Ncl), in vertebrate development. ncl mutant (ncl-/-) zebrafish present with craniofacial anomalies such as mandibulofacial hypoplasia. We observed that ncl-/- mutants exhibited decreased rRNA synthesis and p53-dependent apoptosis, consistent with a role in ribosome biogenesis. However, we found that Nucleolin also performs functions not associated with ribosome biogenesis. We discovered that the half-life of fgf8a mRNA was reduced in ncl-/- mutants, which perturbed Fgf signaling, resulting in misregulated Sox9a-mediated chondrogenesis and Runx2-mediated osteogenesis. Consistent with this model, exogenous FGF8 treatment significantly rescued the cranioskeletal phenotype in ncl-/- zebrafish, suggesting that Nucleolin regulates osteochondroprogenitor differentiation. Our work has therefore uncovered tissue-specific functions for Nucleolin in rRNA transcription and post-transcriptional regulation of growth factor signaling during embryonic craniofacial development.


Asunto(s)
Anomalías Craneofaciales , Pez Cebra , Animales , Factores de Crecimiento de Fibroblastos/metabolismo , Fosfoproteínas/metabolismo , ARN Ribosómico/genética , Proteínas de Unión al ARN/metabolismo , Nucleolina
7.
Development ; 149(14)2022 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-35781558

RESUMEN

Formation of highly unique and complex facial structures is controlled by genetic programs that are responsible for the precise coordination of three-dimensional tissue morphogenesis. However, the underlying mechanisms governing these processes remain poorly understood. We combined mouse genetic and genomic approaches to define the mechanisms underlying normal and defective midfacial morphogenesis. Conditional inactivation of the Wnt secretion protein Wls in Pax3-expressing lineage cells disrupted frontonasal primordial patterning, cell survival and directional outgrowth, resulting in altered facial structures, including midfacial hypoplasia and midline facial clefts. Single-cell RNA sequencing revealed unique transcriptomic atlases of mesenchymal subpopulations in the midfacial primordia, which are disrupted in the conditional Wls mutants. Differentially expressed genes and cis-regulatory sequence analyses uncovered that Wls modulates and integrates a core gene regulatory network, consisting of key midfacial regulatory transcription factors (including Msx1, Pax3 and Pax7) and their downstream targets (including Wnt, Shh, Tgfß and retinoic acid signaling components), in a mesenchymal subpopulation of the medial nasal prominences that is responsible for midline facial formation and fusion. These results reveal fundamental mechanisms underlying mammalian midfacial morphogenesis and related defects at single-cell resolution.


Asunto(s)
Redes Reguladoras de Genes , Transcriptoma , Animales , Cara , Mamíferos/genética , Ratones , Morfogénesis/genética , Transcriptoma/genética , Proteínas Wnt/metabolismo
8.
Proc Natl Acad Sci U S A ; 119(31): e2116974119, 2022 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-35881792

RESUMEN

Ribosomal RNA (rRNA) transcription by RNA polymerase I (Pol I) is a critical rate-limiting step in ribosome biogenesis, which is essential for cell survival. Despite its global function, disruptions in ribosome biogenesis cause tissue-specific birth defects called ribosomopathies, which frequently affect craniofacial development. Here, we describe a cellular and molecular mechanism underlying the susceptibility of craniofacial development to disruptions in Pol I transcription. We show that Pol I subunits are highly expressed in the neuroepithelium and neural crest cells (NCCs), which generate most of the craniofacial skeleton. High expression of Pol I subunits sustains elevated rRNA transcription in NCC progenitors, which supports their high tissue-specific levels of protein translation, but also makes NCCs particularly sensitive to rRNA synthesis defects. Consistent with this model, NCC-specific deletion of Pol I subunits Polr1a, Polr1c, and associated factor Tcof1 in mice cell-autonomously diminishes rRNA synthesis, which leads to p53 protein accumulation, resulting in NCC apoptosis and craniofacial anomalies. Furthermore, compound mutations in Pol I subunits and associated factors specifically exacerbate the craniofacial anomalies characteristic of the ribosomopathies Treacher Collins syndrome and Acrofacial Dysostosis-Cincinnati type. Mechanistically, we demonstrate that diminished rRNA synthesis causes an imbalance between rRNA and ribosomal proteins. This leads to increased binding of ribosomal proteins Rpl5 and Rpl11 to Mdm2 and concomitantly diminished binding between Mdm2 and p53. Altogether, our results demonstrate a dynamic spatiotemporal requirement for rRNA transcription during mammalian cranial NCC development and corresponding tissue-specific threshold sensitivities to disruptions in rRNA transcription in the pathogenesis of congenital craniofacial disorders.


Asunto(s)
Anomalías Craneofaciales , ARN Polimerasa I , ARN Ribosómico , Proteínas Ribosómicas , Cráneo , Transcripción Genética , Animales , Anomalías Craneofaciales/genética , Disostosis Mandibulofacial/genética , Ratones , Cresta Neural/embriología , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , ARN Polimerasa I/metabolismo , ARN Ribosómico/genética , Proteínas Ribosómicas/metabolismo , Cráneo/embriología , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
9.
Brain ; 146(12): 5070-5085, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37635302

RESUMEN

RNA polymerase III (Pol III)-related hypomyelinating leukodystrophy (POLR3-HLD), also known as 4H leukodystrophy, is a severe neurodegenerative disease characterized by the cardinal features of hypomyelination, hypodontia and hypogonadotropic hypogonadism. POLR3-HLD is caused by biallelic pathogenic variants in genes encoding Pol III subunits. While approximately half of all patients carry mutations in POLR3B encoding the RNA polymerase III subunit B, there is no in vivo model of leukodystrophy based on mutation of this Pol III subunit. Here, we determined the impact of POLR3BΔ10 (Δ10) on Pol III in human cells and developed and characterized an inducible/conditional mouse model of leukodystrophy using the orthologous Δ10 mutation in mice. The molecular mechanism of Pol III dysfunction was determined in human cells by affinity purification-mass spectrometry and western blot. Postnatal induction with tamoxifen induced expression of the orthologous Δ10 hypomorph in triple transgenic Pdgfrα-Cre/ERT; R26-Stopfl-EYFP; Polr3bfl mice. CNS and non-CNS features were characterized using a variety of techniques including microCT, ex vivo MRI, immunofluorescence, immunohistochemistry, spectral confocal reflectance microscopy and western blot. Lineage tracing and time series analysis of oligodendrocyte subpopulation dynamics based on co-labelling with lineage-specific and/or proliferation markers were performed. Proteomics suggested that Δ10 causes a Pol III assembly defect, while western blots demonstrated reduced POLR3BΔ10 expression in the cytoplasm and nucleus in human cells. In mice, postnatal Pdgfrα-dependent expression of the orthologous murine mutant protein resulted in recessive phenotypes including severe hypomyelination leading to ataxia, tremor, seizures and limited survival, as well as hypodontia and craniofacial abnormalities. Hypomyelination was confirmed and characterized using classic methods to quantify myelin components such as myelin basic protein and lipids, results which agreed with those produced using modern methods to quantify myelin based on the physical properties of myelin membranes. Lineage tracing uncovered the underlying mechanism for the hypomyelinating phenotype: defective oligodendrocyte precursor proliferation and differentiation resulted in a failure to produce an adequate number of mature oligodendrocytes during postnatal myelinogenesis. In summary, we characterized the Polr3bΔ10 mutation and developed an animal model that recapitulates features of POLR3-HLD caused by POLR3B mutations, shedding light on disease pathogenesis, and opening the door to the development of therapeutic interventions.


Asunto(s)
Anodoncia , Anomalías Craneofaciales , Enfermedades Desmielinizantes , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias , Enfermedades Neurodegenerativas , Humanos , Animales , Ratones , ARN Polimerasa III/genética , ARN Polimerasa III/metabolismo , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/genética , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/genética , Mutación/genética
10.
Dev Biol ; 491: 31-42, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36028102

RESUMEN

Retinoic acid (RA), a metabolite of vitamin A, is a small molecule and morphogen that is required for embryonic development. While normal RA signals are required for hepatic development in a variety of vertebrates, a role for RA during mammalian hepatic specification has yet to be defined. To examine the requirement for RA in murine liver induction, we performed whole embryo culture with the small molecule RA inhibitor, BMS493, to attenuate RA signaling immediately prior to hepatic induction and through liver bud formation. BMS493 treated embryos demonstrated a significant loss of hepatic specification that was confined to the prospective dorsal anterior liver bud. Examination of RA attenuated embryos demonstrates that while the liver bud displays normal expression of foregut endoderm markers and the hepato-pancreatobiliary domain marker, PROX1, the dorsal/anterior liver bud excludes the critical hepatic marker, HNF4α, indicating that RA signals are required for dorsal/anterior hepatic induction. These results were confirmed and extended by careful examination of Rdh10<sup>trex/trex</sup> embryos, which carry a genetic perturbation in RA synthesis. At E9.5 Rdh10<sup>trex/trex</sup> embryos display a similar yet more significant loss of the anterior/dorsal liver bud. Notably the anterior/dorsal liver bud loss correlates with the known dorsal-ventral gradient of the RA synthesis enzyme, Aldh1a2. In addition to altered hepatic specification, the mesoderm surrounding the liver bud is disorganized in RA abrogated embryos. Analysis of E10.5 Rdh10<sup>trex/trex</sup> embryos reveals small livers that appear to lack the dorsal/caudal lobes. Finally, addition of exogenous RA prior to hepatic induction results in a liver bud that has failed to thicken and is largely unspecified. Taken together our ex vivo and in vivo evidence demonstrate that the generation of normal RA gradients is required for hepatic patterning, specification, and growth.


Asunto(s)
Tretinoina , Vitamina A , Animales , Endodermo/metabolismo , Femenino , Hígado , Mamíferos/metabolismo , Ratones , Embarazo , Estudios Prospectivos , Tretinoina/metabolismo , Tretinoina/farmacología , Vitamina A/metabolismo
11.
Hum Mol Genet ; 30(24): 2383-2392, 2021 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-34272563

RESUMEN

Developmental defects of primitive choanae, an anatomical path to connect the embryonic nasal and oral cavity, result in disorders called choanal atresia (CA), which are associated with many congenital diseases and require immediate clinical intervention after birth. Previous studies revealed that reduced retinoid signaling underlies the etiology of CA. In the present study, by using multiple mouse models which conditionally deleted Rdh10 and Gata3 during embryogenesis, we showed that Gata3 expression is regulated by retinoid signaling during embryonic craniofacial development and plays crucial roles for development of the primitive choanae. Interestingly, Gata3 loss of function is known to cause hypoparathyroidism, sensorineural deafness and renal disease (HDR) syndrome, which exhibits CA as one of the phenotypes in humans. Our model partially phenocopies HDR syndrome with CA, and is thus a useful tool for investigating the molecular and cellular mechanisms of HDR syndrome. We further uncovered critical synergy of Gata3 and retinoid signaling during embryonic development, which will shed light on novel molecular and cellular etiology of congenital defects in primitive choanae formation.


Asunto(s)
Pérdida Auditiva Sensorineural , Hipoparatiroidismo , Nefrosis , Animales , Factor de Transcripción GATA3/genética , Pérdida Auditiva Sensorineural/complicaciones , Pérdida Auditiva Sensorineural/genética , Hipoparatiroidismo/genética , Ratones , Nasofaringe , Nefrosis/complicaciones , Nefrosis/genética , Tretinoina
12.
Development ; 147(15)2020 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-32665247

RESUMEN

Retinoic acid (RA), a vitamin A (retinol) derivative, has pleiotropic functions during embryonic development. The synthesis of RA requires two enzymatic reactions: oxidation of retinol into retinaldehyde by alcohol dehydrogenases (ADHs) or retinol dehydrogenases (RDHs); and oxidation of retinaldehyde into RA by aldehyde dehydrogenases family 1, subfamily A (ALDH1as), such as ALDH1a1, ALDH1a2 and ALDH1a3. Levels of RA in tissues are regulated by spatiotemporal expression patterns of genes encoding RA-synthesizing and -degrading enzymes, such as cytochrome P450 26 (Cyp26 genes). Here, we show that RDH10 is important for both sensory and non-sensory formation of the vestibule of the inner ear. Mice deficient in Rdh10 exhibit failure of utricle-saccule separation, otoconial formation and zonal patterning of vestibular sensory organs. These phenotypes are similar to those of Aldh1a3 knockouts, and the sensory phenotype is complementary to that of Cyp26b1 knockouts. Together, these results demonstrate that RDH10 and ALDH1a3 are the key RA-synthesis enzymes involved in vestibular development. Furthermore, we discovered that RA induces Cyp26b1 expression in the developing vestibular sensory organs, which generates the differential RA signaling required for zonal patterning.


Asunto(s)
Homeostasis , Organogénesis , Tretinoina/metabolismo , Vestíbulo del Laberinto/embriología , Oxidorreductasas de Alcohol/genética , Oxidorreductasas de Alcohol/metabolismo , Animales , Ratones , Ratones Noqueados , Retinal-Deshidrogenasa/genética , Retinal-Deshidrogenasa/metabolismo , Ácido Retinoico 4-Hidroxilasa/genética , Ácido Retinoico 4-Hidroxilasa/metabolismo , Vestíbulo del Laberinto/citología
13.
Dev Dyn ; 251(9): 1576-1612, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-34927301

RESUMEN

BACKGROUND: Squamate reptiles (lizards, snakes, and amphisbaenians) exhibit incredible diversity in their locomotion, behavior, morphology, and ecological breadth. Although they often are used as models of locomotor diversity, surprisingly little attention has been given to muscle development in squamate reptiles. In fact, the most detailed examination was conducted almost 80 years ago and solely focused on the proximal limb regions. Herein, we present forelimb and hindlimb muscle morphogenesis data for three lizard species with different locomotion and feeding strategies: the desert grassland whiptail lizard, the central bearded dragon, and the veiled chameleon. This study fills critical gaps in our understanding of muscle morphogenesis in squamate reptiles and presents a comparative and temporospatial analysis of muscle development. RESULTS: Our results reveal a conserved pattern of early muscle development among lizards with different adult morphologies and ecologies. The variations that exist are concentrated in distal regions, particularly the specialized autopodia of chameleons, where differentiation of muscles associated with the digits is delayed. CONCLUSIONS: The chameleon autopod provides an example of major evolutionary modifications to the skeleton with only minor disruption of the conserved order and pattern of limb muscle development. This robustness of muscle patterning facilitates the evolution of extreme yet functional phenotypes.


Asunto(s)
Lagartos , Animales , Evolución Biológica , Extremidades , Miembro Anterior/anatomía & histología , Miembro Anterior/fisiología , Lagartos/genética , Filogenia , Serpientes
14.
Clin Anat ; 35(4): 526-528, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35218594

RESUMEN

Human cadaveric donors are essential for research in the anatomical sciences. However, many research papers in the anatomical sciences often omit a statement regarding the ethical use of the donor cadavers or, as no current standardized versions exist, use language that is extremely varied. To rectify this issue, 22 editors-in-chief of anatomical journals, representing 17 different countries, developed standardized and simplified language that can be used by authors of studies that use human cadaveric tissues. The goal of these editor recommendations is to standardize the writing approach by which the ethical use of cadaveric donors is acknowledged in anatomical studies that use donor human cadavers. Such sections in anatomical papers will help elevate our discipline and promote standardized language use in others non anatomy journals and also other media outlets that use cadaveric tissues.


Asunto(s)
Anatomía , Donantes de Tejidos , Cadáver , Humanos
15.
Dev Dyn ; 250(11): 1584-1599, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33866663

RESUMEN

BACKGROUND: Pronounced asymmetric changes in ocular globe size during eye development have been observed in a number of species ranging from humans to lizards. In contrast, largely symmetric changes in globe size have been described for other species like rodents. We propose that asymmetric changes in the three-dimensional structure of the developing eye correlate with the types of retinal remodeling needed to produce areas of high photoreceptor density. To test this idea, we systematically examined three-dimensional aspects of globe size as a function of eye development in the bifoveated brown anole, Anolis sagrei. RESULTS: During embryonic development, the anole eye undergoes dynamic changes in ocular shape. Initially spherical, the eye elongates in the presumptive foveal regions of the retina and then proceeds through a period of retraction that returns the eye to its spherical shape. During this period of retraction, pit formation and photoreceptor cell packing are observed. We found a similar pattern of elongation and retraction associated with the single fovea of the veiled chameleon, Chamaeleo calyptratus. CONCLUSIONS: These results, together with those reported for other foveated species, support the idea that areas of high photoreceptor packing occur in regions where the ocular globe asymmetrically elongates and retracts during development.


Asunto(s)
Lagartos , Animales , Desarrollo Embrionario , Lagartos/fisiología , Retina
17.
FASEB J ; 34(8): 10931-10947, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32592286

RESUMEN

Enteric nervous system (ENS) development is governed by interactions between neural crest cells (NCC) and the extracellular matrix (ECM). Hirschsprung disease (HSCR) results from incomplete NCC migration and failure to form an appropriate ENS. Prior studies implicate abnormal ECM in NCC migration failure. We performed a comparative microarray of the embryonic distal hindgut of wild-type and EdnrBNCC-/- mice that model HSCR and identified laminin-ß1 as upregulated in EdnrBNCC-/- colon. We identified decreased expression of 37/67 kDa laminin receptor (LAMR), which binds laminin-ß1, in human HSCR myenteric plexus and EdnrBNCC-/- NCC. Using a combination of in vitro gut slice cultures and ex vivo organ cultures, we determined the mechanistic role of LAMR in NCC migration. We found that enteric NCC express LAMR, which is downregulated in human and murine HSCR. Binding of LAMR by the laminin-ß1 analog YIGSR promotes NCC migration. Silencing of LAMR abrogated these effects. Finally, applying YIGSR to E13.5 EdnrBNCC-/- colon explants resulted in 80%-100% colonization of the hindgut. This study adds LAMR to the large list of receptors through which NCC interact with their environment during ENS development. These results should be used to inform ongoing integrative, regenerative medicine approaches to HSCR.


Asunto(s)
Movimiento Celular/fisiología , Sistema Nervioso Entérico/crecimiento & desarrollo , Sistema Nervioso Entérico/metabolismo , Cresta Neural/metabolismo , Receptores de Laminina/metabolismo , Animales , Colon/metabolismo , Colon/fisiología , Regulación hacia Abajo/fisiología , Sistema Nervioso Entérico/fisiología , Enfermedad de Hirschsprung/metabolismo , Enfermedad de Hirschsprung/fisiopatología , Humanos , Laminina/metabolismo , Ratones , Ratones Noqueados , Cresta Neural/fisiología , Organogénesis/fisiología , Receptor de Endotelina B/metabolismo , Regulación hacia Arriba/fisiología
18.
Clin Anat ; 34(1): 2-4, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32808702

RESUMEN

Research within the anatomical sciences often relies on human cadaveric tissues. Without the good will of these donors who allow us to use their bodies to push forward our anatomical knowledge, most human anatomical research would come to a standstill. However, many research papers omit an acknowledgement to the donor cadavers or, as no current standardized versions exist, use language that is extremely varied. To remedy this problem, 20 editors-in-chiefs from 17 anatomical journals joined together to put together official recommendations that can be used by authors when acknowledging the donor cadavers used in their studies. The goal of these recommendations is to standardize the writing approach by which donors are acknowledged in anatomical studies that use human cadaveric tissues. Such sections in anatomical papers will not only rightfully thank those who made the donation but might also encourage, motivate, and inspire future individuals to make such gifts for the betterment of the anatomical sciences and patient care.


Asunto(s)
Anatomía/educación , Cadáver , Publicaciones Periódicas como Asunto , Obtención de Tejidos y Órganos , Investigación Biomédica , Disección , Humanos
19.
Hum Mol Genet ; 27(15): 2628-2643, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29750247

RESUMEN

Ribosome biogenesis is a global process required for growth and proliferation in all cells, but disruptions in this process surprisingly lead to tissue-specific phenotypic disorders termed ribosomopathies. Pathogenic variants in the RNA Polymerase (Pol) I subunit POLR1A cause Acrofacial Dysostosis-Cincinnati type, which is characterized by craniofacial and limb anomalies. In a zebrafish model of Acrofacial Dysostosis-Cincinnati type, we demonstrate that polr1a-/- mutants exhibit deficient 47S rRNA transcription, reduced monosomes and polysomes and, consequently, defects in protein translation. This results in Tp53-dependent neuroepithelial apoptosis, diminished neural crest cell proliferation and cranioskeletal anomalies. This indicates that POLR1A is critical for rRNA transcription, which is considered a rate limiting step in ribosome biogenesis, underpinning its requirement for neuroepithelial cell and neural crest cell proliferation and survival. To understand the contribution of the Tp53 pathway to the pathogenesis of Acrofacial Dysostosis-Cincinnati type, we genetically inhibited tp53 in polr1a-/- mutant embryos. Tp53 inhibition suppresses neuroepithelial apoptosis and partially ameliorates the polr1a mutant phenotype. However, complete rescue of cartilage development is not observed due to the failure to improve rDNA transcription and neural crest cell proliferation. Altogether, these data reveal specific functions for both Tp53-dependent and independent signaling downstream of polr1a in ribosome biogenesis during neural crest cell and craniofacial development, in the pathogenesis of Acrofacial Dysostosis-Cincinnati type. Furthermore, our work sets the stage for identifying Tp53-independent therapies to potentially prevent Acrofacial dysostosis-Cincinnati type and other similar ribosomopathies.


Asunto(s)
Deformidades Congénitas de las Extremidades/metabolismo , Disostosis Mandibulofacial/metabolismo , Cresta Neural/patología , Proteína p53 Supresora de Tumor/metabolismo , Proteínas de Pez Cebra/metabolismo , Animales , Diferenciación Celular/genética , Proliferación Celular/genética , Modelos Animales de Enfermedad , Embrión no Mamífero , Regulación del Desarrollo de la Expresión Génica , Humanos , Deformidades Congénitas de las Extremidades/patología , Disostosis Mandibulofacial/patología , Mutación , ARN Polimerasa I/genética , ARN Polimerasa I/metabolismo , Transducción de Señal , Proteína p53 Supresora de Tumor/genética , Pez Cebra/embriología , Pez Cebra/genética , Proteínas de Pez Cebra/genética
20.
Am J Med Genet A ; 182(7): 1555-1561, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32352199

RESUMEN

The Society for Craniofacial Genetics and Developmental Biology (SCGDB) 42nd Annual Meeting was held at the MD Anderson Cancer Center in Houston, Texas from October 14-15, 2019. The SCGDB meeting included scientific sessions on the molecular regulation of craniofacial development, cell biology of craniofacial development, signaling during craniofacial development, translational craniofacial biology, and for the first time, a career development workshop. Over a one hundred attendees from 21 states, and representing over 50 different scientific institutions, participated. The diverse group of scientists included cell and developmental biologists and clinical geneticists, promoting excellent discussions about molecular pathways guiding abnormal cell behaviors and the resultant morphological changes to craniofacial development. The results were high-quality science and a welcoming environment for trainees interested in craniofacial biology.


Asunto(s)
Anomalías Craneofaciales/genética , Biología Evolutiva , Animales , Distinciones y Premios , Selección de Profesión , Regulación del Desarrollo de la Expresión Génica , Humanos , Ratones , Cresta Neural/patología , Cresta Neural/fisiología , Sociedades Científicas , Xenopus/genética , Xenopus/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA