Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Biochem Biophys Res Commun ; 626: 79-84, 2022 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-35973378

RESUMEN

CD44 mRNA contains nine consecutive cassette exons, v2 to v10. Upon alternative splicing, several isoforms are produced with different impacts on tumor biology. Here, we demonstrate the involvement of the RNA-binding proteins CELF1 and ELAVL1 in the control of CD44 splicing. We show by FRET-FLIM that these proteins directly interact in the nucleus. By combining RNAi-mediated depletion and exon array hybridization in HeLa cells, we observe that the exons v7 to v10 of CD44 are highly sensitive to CELF1 and ELAVL1 depletion. We confirm by RT-PCR that CELF1 and ELAVL1 together stimulate the inclusion of these exons in CD44 mRNA. Finally, we show in eight different tumor types that high expression of CELF1 and/or ELAVL1 is correlated with the inclusion of CD44 variable exons. These data point to functional interactions between CELF1 and ELAVL1 in the control of CD44 splicing in human cancers.


Asunto(s)
Empalme Alternativo , Receptores de Hialuranos , Proteínas CELF1 , Proteína 1 Similar a ELAV/genética , Proteína 1 Similar a ELAV/metabolismo , Exones/genética , Células HeLa , Humanos , Receptores de Hialuranos/genética , Receptores de Hialuranos/metabolismo , ARN Mensajero/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
2.
J Microsc ; 285(1): 3-19, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34623634

RESUMEN

Artificial intelligence is nowadays used for cell detection and classification in optical microscopy during post-acquisition analysis. The microscopes are now fully automated and next expected to be smart by making acquisition decisions based on the images. It calls for analysing them on the fly. Biology further imposes training on a reduced data set due to cost and time to prepare the samples and have the data sets annotated by experts. We propose a real-time image processing compliant with these specifications by balancing accurate detection and execution performance. We characterised the images using a generic, high-dimensional feature extractor. We then classified the images using machine learning to understand the contribution of each feature in decision and execution time. We found that the non-linear-classifier random forests outperformed Fisher's linear discriminant. More importantly, the most discriminant and time-consuming features could be excluded without significant accuracy loss, offering a substantial gain in execution time. It suggests a feature-group redundancy likely related to the biology of the observed cells. We offer a method to select fast and discriminant features. In our assay, a 79.6 ± 2.4% accurate classification of a cell took 68.7 ± 3.5 ms (mean ± SD, 5-fold cross-validation nested in 10 bootstrap repeats), corresponding to 14 cells per second, dispatched into eight phases of the cell cycle, using 12 feature groups and operating a consumer market ARM-based embedded system. A simple neural network offered similar performances paving the way to faster training and classification, using parallel execution on a general-purpose graphic processing unit. Finally, this strategy is also usable for deep neural networks paving the way to optimizing these algorithms for smart microscopy.

3.
Biol Cell ; 113(6): 272-280, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33554340

RESUMEN

Cancer is a multi-step disease where an initial tumour progresses through critical steps shaping, in most cases, life-threatening secondary foci called metastases. The oncogenic cascade involves genetic, epigenetic, signalling pathways, intracellular trafficking and/or metabolic alterations within cancer cells. In addition, pre-malignant and malignant cells orchestrate complex and dynamic interactions with non-malignant cells and acellular matricial components or secreted factors within the tumour microenvironment that is instrumental in the progression of the disease. As our aptitude to effectively treat cancer mostly depends on our ability to decipher, properly diagnose and impede cancer progression and metastasis formation, full characterisation of molecular complexes and cellular processes at play along the metastasis cascade is crucial. For many years, the scientific community lacked adapted imaging and molecular technologies to accurately dissect, at the highest resolution possible, tumour and stromal cells behaviour within their natural microenvironment. In that context, the NANOTUMOR consortium is a French national multi-disciplinary workforce which aims at a providing a multi-scale characterisation of the oncogenic cascade, from the atomic level to the dynamic organisation of the cell in response to genetic mutations, environmental changes or epigenetic modifications. Ultimately, this program aims at identifying new therapeutic targets using innovative drug design.


Asunto(s)
Bases de Datos como Asunto , Neoplasias/patología , Humanos
4.
Cell Mol Life Sci ; 77(6): 1031-1047, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31562563

RESUMEN

AURKA is a serine/threonine kinase overexpressed in several cancers. Originally identified as a protein with multifaceted roles during mitosis, improvements in quantitative microscopy uncovered several non-mitotic roles as well. In physiological conditions, AURKA regulates cilia disassembly, neurite extension, cell motility, DNA replication and senescence programs. In cancer-like contexts, AURKA actively promotes DNA repair, it acts as a transcription factor, promotes cell migration and invasion, and it localises at mitochondria to regulate mitochondrial dynamics and ATP production. Here we review the non-mitotic roles of AURKA, and its partners outside of cell division. In addition, we give an insight into how structural data and quantitative fluorescence microscopy allowed to understand AURKA activation and its interaction with new substrates, highlighting future developments in fluorescence microscopy needed to better understand AURKA functions in vivo. Last, we will recapitulate the most significant AURKA inhibitors currently in clinical trials, and we will explore how the non-mitotic roles of the kinase may provide new insights to ameliorate current pharmacological strategies against AURKA overexpression.


Asunto(s)
Aurora Quinasa A/metabolismo , Neoplasias/metabolismo , Animales , Aurora Quinasa A/análisis , Aurora Quinasa A/antagonistas & inhibidores , Ciclo Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Humanos , Microscopía Fluorescente , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Dinámicas Mitocondriales/efectos de los fármacos , Mitosis/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Especificidad por Sustrato
5.
Nucleic Acids Res ; 47(12): 6184-6194, 2019 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-31081027

RESUMEN

Chromatin accessibility to protein factors is critical for genome activities. However, the dynamic properties of chromatin higher-order structures that regulate its accessibility are poorly understood. Here, we took advantage of the microenvironment sensitivity of the fluorescence lifetime of EGFP-H4 histone incorporated in chromatin to map in the nucleus of live cells the dynamics of chromatin condensation and its direct interaction with a tail acetylation recognition domain (the double bromodomain module of human TAFII250, dBD). We reveal chromatin condensation fluctuations supported by mechanisms fundamentally distinct from that of condensation. Fluctuations are spontaneous, yet their amplitudes are affected by their sub-nuclear localization and by distinct and competing mechanisms dependent on histone acetylation, ATP and both. Moreover, we show that accessibility of acetylated histone H4 to dBD is not restricted by chromatin condensation nor predicted by acetylation, rather, it is predicted by chromatin condensation fluctuations.


Asunto(s)
Cromatina/química , Acetilación , Adenosina Trifosfato/metabolismo , Colorantes Fluorescentes , Proteínas Fluorescentes Verdes/análisis , Células HEK293 , Histonas/metabolismo , Humanos , Factores Asociados con la Proteína de Unión a TATA/metabolismo
6.
J Biol Chem ; 294(11): 3824-3836, 2019 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-30630949

RESUMEN

Phagocyte NADPH oxidase produces superoxide anions, a precursor of reactive oxygen species (ROS) critical for host responses to microbial infections. However, uncontrolled ROS production contributes to inflammation, making NADPH oxidase a major drug target. It consists of two membranous (Nox2 and p22phox) and three cytosolic subunits (p40phox, p47phox, and p67phox) that undergo structural changes during enzyme activation. Unraveling the interactions between these subunits and the resulting conformation of the complex could shed light on NADPH oxidase regulation and help identify inhibition sites. However, the structures and the interactions of flexible proteins comprising several well-structured domains connected by intrinsically disordered protein segments are difficult to investigate by conventional techniques such as X-ray crystallography, NMR, or cryo-EM. Here, we developed an analytical strategy based on FRET-fluorescence lifetime imaging (FLIM) and fluorescence cross-correlation spectroscopy (FCCS) to structurally and quantitatively characterize NADPH oxidase in live cells. We characterized the inter- and intramolecular interactions of its cytosolic subunits by elucidating their conformation, stoichiometry, interacting fraction, and affinities in live cells. Our results revealed that the three subunits have a 1:1:1 stoichiometry and that nearly 100% of them are present in complexes in living cells. Furthermore, combining FRET data with small-angle X-ray scattering (SAXS) models and published crystal structures of isolated domains and subunits, we built a 3D model of the entire cytosolic complex. The model disclosed an elongated complex containing a flexible hinge separating two domains ideally positioned at one end of the complex and critical for oxidase activation and interactions with membrane components.


Asunto(s)
Citosol/enzimología , Modelos Moleculares , NADPH Oxidasas/química , NADPH Oxidasas/metabolismo , Imagen Óptica , Fagocitos/enzimología , Animales , Células COS , Supervivencia Celular , Células Cultivadas , Chlorocebus aethiops , Simulación por Computador , Microscopía Fluorescente , Oxígeno/análisis , Conformación Proteica
7.
Nat Methods ; 14(11): 1090-1096, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28945706

RESUMEN

Förster resonance energy transfer (FRET)-based tension sensor modules (TSMs) are available for investigating how distinct proteins bear mechanical forces in cells. Yet, forces in the single piconewton (pN) regime remain difficult to resolve, and tools for multiplexed tension sensing are lacking. Here, we report the generation and calibration of a genetically encoded, FRET-based biosensor called FL-TSM, which is characterized by a near-digital force response and increased sensitivity at 3-5 pN. In addition, we present a method allowing the simultaneous evaluation of coexpressed tension sensor constructs using two-color fluorescence lifetime microscopy. Finally, we introduce a procedure to calculate the fraction of mechanically engaged molecules within cells. Application of these techniques to new talin biosensors reveals an intramolecular tension gradient across talin-1 that is established upon integrin-mediated cell adhesion. The tension gradient is actomyosin- and vinculin-dependent and sensitive to the rigidity of the extracellular environment.


Asunto(s)
Talina/química , Calibración , Transferencia Resonante de Energía de Fluorescencia , Adhesiones Focales/química , Microscopía Fluorescente , Miosinas/química
8.
Nat Chem Biol ; 10(5): 350-357, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24681536

RESUMEN

Here we combined classical biochemistry with new biophysical approaches to study the organization of glycosylphosphatidylinositol (GPI)-anchored proteins (GPI-APs) with high spatial and temporal resolution at the plasma membrane of polarized epithelial cells. We show that in polarized MDCK cells, after sorting in the Golgi, each GPI-AP reaches the apical surface in homoclusters. Golgi-derived homoclusters are required for their subsequent plasma membrane organization into cholesterol-dependent heteroclusters. By contrast, in nonpolarized MDCK cells, GPI-APs are delivered to the surface as monomers in an unpolarized manner and are not able to form heteroclusters. We further demonstrate that this GPI-AP organization is regulated by the content of cholesterol in the Golgi apparatus and is required to maintain the functional state of the protein at the apical membrane. Thus, in contrast to fibroblasts, in polarized epithelial cells, a selective cholesterol-dependent sorting mechanism in the Golgi regulates both the organization and function of GPI-APs at the apical surface.


Asunto(s)
Glicosilfosfatidilinositoles/metabolismo , Aparato de Golgi/metabolismo , Animales , Células CHO , Línea Celular , Colesterol/metabolismo , Cricetinae , Cricetulus , Perros , Proteínas Fluorescentes Verdes/metabolismo
9.
Anal Biochem ; 491: 10-7, 2015 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-26334608

RESUMEN

Cytometry is a versatile and powerful method applicable to different fields, particularly pharmacology and biomedical studies. Based on the data obtained, cytometric studies are classified into high-throughput (HTP) or high-content screening (HCS) groups. However, assays combining the advantages of both are required to facilitate research. In this study, we developed a high-throughput system to profile cellular populations in terms of time- or dose-dependent responses to apoptotic stimulations because apoptotic inducers are potent anticancer drugs. We previously established assay systems involving protease to monitor live cells for apoptosis using tunable fluorescence resonance energy transfer (FRET)-based bioprobes. These assays can be used for microscopic analyses or fluorescence-activated cell sorting. In this study, we developed FRET-based bioprobes to detect the activity of the apoptotic markers caspase-3 and caspase-9 via changes in bioprobe fluorescence lifetimes using a flow cytometer for direct estimation of FRET efficiencies. Different patterns of changes in the fluorescence lifetimes of these markers during apoptosis were observed, indicating a relationship between discrete steps in the apoptosis process. The findings demonstrate the feasibility of evaluating collective cellular dynamics during apoptosis.


Asunto(s)
Caspasa 3/análisis , Caspasa 9/análisis , Citometría de Flujo , Transferencia Resonante de Energía de Fluorescencia , Apoptosis/efectos de los fármacos , Caspasa 3/química , Caspasa 9/química , Cicloheximida/toxicidad , Colorantes Fluorescentes/química , Proteínas Fluorescentes Verdes/química , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HeLa , Humanos , Plásmidos/genética , Plásmidos/metabolismo , Factor de Necrosis Tumoral alfa/farmacología
10.
Bioessays ; 34(5): 369-76, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22415767

RESUMEN

New imaging methodologies in quantitative fluorescence microscopy, such as Förster resonance energy transfer (FRET), have been developed in the last few years and are beginning to be extensively applied to biological problems. FRET is employed for the detection and quantification of protein interactions, and of biochemical activities. Herein, we review the different methods to measure FRET in microscopy, and more importantly, their strengths and weaknesses. In our opinion, fluorescence lifetime imaging microscopy (FLIM) is advantageous for detecting inter-molecular interactions quantitatively, the intensity ratio approach representing a valid and straightforward option for detecting intra-molecular FRET. Promising approaches in single molecule techniques and data analysis for quantitative and fast spatio-temporal protein-protein interaction studies open new avenues for FRET in biological research.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia/métodos , Microscopía Fluorescente/métodos , Imagen Molecular/métodos , Transferencia Resonante de Energía de Fluorescencia/tendencias , Proteínas Fluorescentes Verdes , Microscopía Fluorescente/tendencias , Mapeo de Interacción de Proteínas/métodos
11.
Front Mol Biosci ; 11: 1360142, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38774234

RESUMEN

The spatiotemporal compartmentalization of membrane-associated glycosylphosphatidylinositol-anchored proteins (GPI-APs) on the cell surface regulates their biological activities. These GPI-APs occupy distinct cellular functions such as enzymes, receptors, and adhesion molecules, and they are implicated in several vital cellular processes. Thus, unraveling the mechanisms and regulators of their membrane organization is essential. In polarized epithelial cells, GPI-APs are enriched at the apical surface, where they form small cholesterol-independent homoclusters and larger heteroclusters accommodating multiple GPI-AP species, all confined within areas of approximately 65-70 nm in diameter. Notably, GPI-AP homoclustering occurs in the Golgi apparatus through a cholesterol- and calcium-dependent mechanism that drives their apical sorting. Despite the critical role of Golgi GPI-AP clustering in their cell surface organization and the importance of cholesterol in heterocluster formation, the regulatory mechanisms governing GPI-AP surface organization, particularly in the context of epithelial polarity, remain elusive. Given that the actin cytoskeleton undergoes substantial remodeling during polarity establishment, this study explores whether the actin cytoskeleton regulates the spatiotemporal apical organization of GPI-APs in MDCK cells. Utilizing various imaging techniques (number and brightness, FRET/FLIM, and dSTORM coupled to pair correlation analysis), we demonstrate that the apical organization of GPI-APs, at different scales, does not rely on the actin cytoskeleton, unlike in fibroblastic cells. Interestingly, calcium chelation disrupts the organization of GPI-APs at the apical surface by impairing Golgi GPI-AP clustering, emphasizing the existence of an interplay among Golgi clustering, apical sorting, and surface organization in epithelial cells. In summary, our findings unveil distinct mechanisms regulating the organization of GPI-APs in cell types of different origins, plausibly allowing them to adapt to different external signals and different cellular environments in order to achieve specialized functions.

12.
J Virol ; 86(9): 5314-29, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22345443

RESUMEN

Epstein-Barr virus (EBV) establishes a life-long latent infection in humans. In proliferating latently infected cells, EBV genomes persist as multiple episomes that undergo one DNA replication event per cell cycle and remain attached to the mitotic chromosomes. EBV nuclear antigen 1 (EBNA-1) binding to the episome and cellular genome is essential to ensure proper episome replication and segregation. However, the nature and regulation of EBNA-1 interaction with chromatin has not been clearly elucidated. This activity has been suggested to involve EBNA-1 binding to DNA, duplex RNA, and/or proteins. EBNA-1 binding protein 2 (EBP2), a nucleolar protein, has been proposed to act as a docking protein for EBNA-1 on mitotic chromosomes. However, there is no direct evidence thus far for EBP2 being associated with EBNA-1 during mitosis. By combining video microscopy and Förster resonance energy transfer (FRET) microscopy, we demonstrate here for the first time that EBNA-1 and EBP2 interact in the nucleoplasm, as well as in the nucleoli during interphase. However, in strong contrast to the current proposed model, we were unable to observe any interaction between EBNA-1 and EBP2 on mitotic chromosomes. We also performed a yeast double-hybrid screening, followed by a FRET analysis, that led us to identify HMGB2 (high-mobility group box 2), a well-known chromatin component, as a new partner for EBNA-1 on chromatin during interphase and mitosis. Although the depletion of HMGB2 partly altered EBNA-1 association with chromatin in HeLa cells during interphase and mitosis, it did not significantly impact the maintenance of EBV episomes in Raji cells.


Asunto(s)
Cromatina/metabolismo , Antígenos Nucleares del Virus de Epstein-Barr/metabolismo , Hepatocitos/virología , Interfase , Mitosis , Proteínas Portadoras/metabolismo , Línea Celular , Nucléolo Celular/metabolismo , Antígenos Nucleares del Virus de Epstein-Barr/genética , Expresión Génica , Proteína HMGB2/metabolismo , Hepatocitos/metabolismo , Humanos , Plásmidos/metabolismo , Unión Proteica , Estabilidad Proteica , Transporte de Proteínas , Proteínas de Unión al ARN
13.
Autophagy ; 19(8): 2275-2295, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36814061

RESUMEN

Although several mechanisms of macroautophagy/autophagy have been dissected in the last decade, following this pathway in real time remains challenging. Among the early events leading to its activation, the ATG4B protease primes the key autophagy player MAP1LC3B/LC3B. Given the lack of reporters to follow this event in living cells, we developed a Förster's resonance energy transfer (FRET) biosensor responding to the priming of LC3B by ATG4B. The biosensor was generated by flanking LC3B within a pH-resistant donor-acceptor FRET pair, Aquamarine-tdLanYFP. We here showed that the biosensor has a dual readout. First, FRET indicates the priming of LC3B by ATG4B and the resolution of the FRET image makes it possible to characterize the spatial heterogeneity of the priming activity. Second, quantifying the number of Aquamarine-LC3B puncta determines the degree of autophagy activation. We then showed that there are pools of unprimed LC3B upon ATG4B downregulation, and the priming of the biosensor is abolished in ATG4B knockout cells. The lack of priming can be rescued with the wild-type ATG4B or with the partially active W142A mutant, but not with the catalytically dead C74S mutant. Moreover, we screened for commercially-available ATG4B inhibitors, and illustrated their differential mode of action by implementing a spatially-resolved, broad-to-sensitive analysis pipeline combining FRET and the quantification of autophagic puncta. Finally, we uncovered the CDK1-dependent regulation of the ATG4B-LC3B axis at mitosis. Therefore, the LC3B FRET biosensor paves the way for a highly-quantitative monitoring of the ATG4B activity in living cells and in real time, with unprecedented spatiotemporal resolution.Abbreviations: Aqua: aquamarine; ATG: autophagy related; AURKA: aurora kinase A; BafA1: bafilomycin A1; CDK1: cyclin dependent kinase 1; DKO: double knockout; FLIM: fluorescence lifetime imaging microscopy; FP: fluorescence protein; FRET: Förster's resonance energy transfer; GABARAP: GABA type A receptor-associated protein; HBSS: Hanks' balanced salt solution; KO: knockout; LAMP2: lysosomal associated membrane protein 2; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; NSC: NSC 185058; PE: phosphatidylethanolamine; SKO: single knockout; TKO: triple knockout; ULK1: unc-51 like autophagy activating kinase 1; WT: wild-type; ZPCK: Z-L-phe chloromethyl ketone.


Asunto(s)
Autofagia , Técnicas Biosensibles , Autofagia/genética , Proteínas Relacionadas con la Autofagia/metabolismo , Transferencia Resonante de Energía de Fluorescencia/métodos , Proteínas Asociadas a Microtúbulos/metabolismo
14.
ACS Sens ; 6(11): 3940-3947, 2021 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-34676768

RESUMEN

Yellow fluorescent proteins (YFPs) are widely used as optical reporters in Förster resonance energy transfer (FRET)-based biosensors. Although great improvements have been done, the sensitivity of the biosensors is still limited by the low photostability and the poor fluorescence performances of YFPs at acidic pH values. Here, we characterize the yellow fluorescent protein tdLanYFP, derived from the tetrameric protein from the cephalochordate Branchiostoma lanceolatum, LanYFP. With a quantum yield of 0.92 and an extinction coefficient of 133,000 mol-1·L·cm-1, it is, to our knowledge, the brightest dimeric fluorescent protein available. Contrasting with EYFP and its derivatives, tdLanYFP has a very high photostability in vitro and in live cells. As a consequence, tdLanYFP allows imaging of cellular structures with subdiffraction resolution using STED nanoscopy and is compatible with the use of spectromicroscopies in single-molecule regimes. Its very low pK1/2 of 3.9 makes tdLanYFP an excellent tag even at acidic pH values. Finally, we show that tdLanYFP is a valuable FRET partner either as a donor or acceptor in different biosensing modalities. Altogether, these assets make tdLanYFP a very attractive yellow fluorescent protein for long-term or single-molecule live-cell imaging including FRET experiments at acidic pH.


Asunto(s)
Técnicas Biosensibles , Transferencia Resonante de Energía de Fluorescencia , Proteínas Fluorescentes Verdes/genética , Concentración de Iones de Hidrógeno , Proteínas Luminiscentes
15.
Life Sci Alliance ; 4(6)2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33820826

RESUMEN

Epithelial and haematologic tumours often show the overexpression of the serine/threonine kinase AURKA. Recently, AURKA was shown to localise at mitochondria, where it regulates mitochondrial dynamics and ATP production. Here we define the molecular mechanisms of AURKA in regulating mitochondrial turnover by mitophagy. AURKA triggers the degradation of Inner Mitochondrial Membrane/matrix proteins by interacting with core components of the autophagy pathway. On the inner mitochondrial membrane, the kinase forms a tripartite complex with MAP1LC3 and the mitophagy receptor PHB2, which triggers mitophagy in a PARK2/Parkin-independent manner. The formation of the tripartite complex is induced by the phosphorylation of PHB2 on Ser39, which is required for MAP1LC3 to interact with PHB2. Last, treatment with the PHB2 ligand xanthohumol blocks AURKA-induced mitophagy by destabilising the tripartite complex and restores normal ATP production levels. Altogether, these data provide evidence for a role of AURKA in promoting mitophagy through the interaction with PHB2 and MAP1LC3. This work paves the way to the use of function-specific pharmacological inhibitors to counteract the effects of the overexpression of AURKA in cancer.


Asunto(s)
Aurora Quinasa A/metabolismo , Mitocondrias/metabolismo , Mitofagia/genética , Animales , Aurora Quinasa A/fisiología , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Células HEK293 , Humanos , Células MCF-7 , Proteínas Asociadas a Microtúbulos/metabolismo , Mitocondrias/fisiología , Dinámicas Mitocondriales/fisiología , Membranas Mitocondriales/metabolismo , Mitofagia/fisiología , Prohibitinas , Proteínas Represoras/metabolismo , Ubiquitina-Proteína Ligasas
16.
Biomed Opt Express ; 12(8): 5290-5304, 2021 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-34513257

RESUMEN

We report how a recently developed polarization imaging technique, implementing micro-wave photonics and referred to as orthogonality-breaking (OB) imaging, can be adapted on a classical confocal fluorescence microscope, and is able to provide informative polarization images from a single scan of the cell sample. For instance, the comparison of the images of various cell lines at different cell-cycle stages obtained by OB polarization microscopy and fluorescence confocal images shows that an endogenous polarimetric contrast arizes with this instrument on compacted chromosomes during cell division.

17.
Nat Commun ; 12(1): 6989, 2021 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-34848727

RESUMEN

Biocompatible fluorescent reporters with spectral properties spanning the entire visible spectrum are indispensable tools for imaging the biochemistry of living cells and organisms in real time. Here, we report the engineering of a fluorescent chemogenetic reporter with tunable optical and spectral properties. A collection of fluorogenic chromophores with various electronic properties enables to generate bimolecular fluorescent assemblies that cover the visible spectrum from blue to red using a single protein tag engineered and optimized by directed evolution and rational design. The ability to tune the fluorescence color and properties through simple molecular modulation provides a broad experimental versatility for imaging proteins in live cells, including neurons, and in multicellular organisms, and opens avenues for optimizing Förster resonance energy transfer (FRET) biosensors in live cells. The ability to tune the spectral properties and fluorescence performance enables furthermore to match the specifications and requirements of advanced super-resolution imaging techniques.


Asunto(s)
Diagnóstico por Imagen/métodos , Fluorescencia , Ingeniería de Proteínas/métodos , Animales , Materiales Biocompatibles , Técnicas Biosensibles , Color , Colorantes , Electrónica , Femenino , Transferencia Resonante de Energía de Fluorescencia , Colorantes Fluorescentes , Proteínas Fluorescentes Verdes , Masculino , Neuronas , Ratas , Ratas Sprague-Dawley
18.
J Biol Chem ; 284(49): 34244-56, 2009 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-19759398

RESUMEN

Amphiphysin 1, an endocytic adaptor concentrated at synapses that couples clathrin-mediated endocytosis to dynamin-dependent fission, was also shown to have a regulatory role in actin dynamics. Here, we report that amphiphysin 1 interacts with N-WASP and stimulates N-WASP- and Arp2/3-dependent actin polymerization. Both the Src homology 3 and the N-BAR domains are required for this stimulation. Acidic liposome-triggered, N-WASP-dependent actin polymerization is strongly impaired in brain cytosol of amphiphysin 1 knock-out mice. FRET-FLIM analysis of Sertoli cells, where endogenously expressed amphiphysin 1 co-localizes with N-WASP in peripheral ruffles, confirmed the association between the two proteins in vivo. This association undergoes regulation and is enhanced by stimulating phosphatidylserine receptors on the cell surface with phosphatidylserine-containing liposomes that trigger ruffle formation. These results indicate that actin regulation is a key function of amphiphysin 1 and that such function cooperates with the endocytic adaptor role and membrane shaping/curvature sensing properties of the protein during the endocytic reaction.


Asunto(s)
Actinas/química , Regulación de la Expresión Génica , Proteínas del Tejido Nervioso/metabolismo , Proteína Neuronal del Síndrome de Wiskott-Aldrich/metabolismo , Actinas/metabolismo , Animales , Encéfalo/metabolismo , Membrana Celular/metabolismo , Citosol/metabolismo , Endocitosis , Transferencia Resonante de Energía de Fluorescencia , Liposomas/química , Masculino , Ratones , Ratones Noqueados , Ratas , Receptores de Superficie Celular/metabolismo , Células de Sertoli/metabolismo
19.
Proc Natl Acad Sci U S A ; 104(46): 18061-6, 2007 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-17984062

RESUMEN

beta-arrestins (beta-arrs), two ubiquitous proteins involved in serpentine heptahelical receptor regulation and signaling, form constitutive homo- and heterooligomers stabilized by inositol 1,2,3,4,5,6-hexakisphosphate (IP6). Monomeric beta-arrs are believed to interact with receptors after agonist activation, and therefore, beta-arr oligomers have been proposed to represent a resting biologically inactive state. In contrast to this, we report here that the interaction with and subsequent titration out of the nucleus of the protooncogene Mdm2 specifically require beta-arr2 oligomers together with the previously characterized nucleocytoplasmic shuttling of beta-arr2. Mutation of the IP6-binding sites impair oligomerization, reduce interaction with Mdm2, and inhibit p53-dependent antiproliferative effects of beta-arr2, whereas the competence for receptor regulation and signaling is maintained. These observations suggest that the intracellular concentration of beta-arr2 oligomers might control cell survival and proliferation.


Asunto(s)
Arrestinas/fisiología , Biopolímeros/química , Ácido Fítico/farmacología , Proteínas Proto-Oncogénicas c-mdm2/fisiología , Proteína p53 Supresora de Tumor/antagonistas & inhibidores , Animales , Arrestinas/química , Sitios de Unión , Células COS , Línea Celular , Chlorocebus aethiops , Humanos , Ácido Fítico/metabolismo , Arrestina beta 2 , beta-Arrestinas
20.
J Vis Exp ; (161)2020 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-32804172

RESUMEN

Epithelial cancers are often hallmarked by the overexpression of the Ser/Thr kinase Aurora A/AURKA. AURKA is a multifunctional protein that activates upon its autophosphorylation on Thr288. AURKA abundance peaks in mitosis, where it controls the stability and the fidelity of the mitotic spindle, and the overall efficiency of mitosis. Although well characterized at the structural level, a consistent monitoring of the activation of AURKA throughout the cell cycle is lacking. A possible solution consists in using genetically-encoded Förster's Resonance Energy Transfer (FRET) biosensors to gain insight into the autophosphorylation of AURKA with sufficient spatiotemporal resolution. Here, we describe a protocol to engineer FRET biosensors detecting Thr288 autophosphorylation, and how to follow this modification during mitosis. First, we provide an overview of possible donor/acceptor FRET pairs, and we show possible cloning and insertion methods of AURKA FRET biosensors in mammalian cells. Then, we provide a step-by-step analysis for rapid FRET measurements by fluorescence lifetime imaging microscopy (FLIM) on a custom-built setup. However, this protocol is also applicable to alternative commercial solutions available. We conclude by considering the most appropriate FRET controls for an AURKA-based biosensor, and by highlighting potential future improvements to further increase the sensitivity of this tool.


Asunto(s)
Aurora Quinasa A/metabolismo , Técnicas Biosensibles/métodos , Transferencia Resonante de Energía de Fluorescencia/métodos , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA