Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sci Rep ; 6: 34846, 2016 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-27703274

RESUMEN

The major limitations of pathogen-directed therapies are the emergence of drug-resistance and their narrow spectrum of coverage. A recently applied approach directs therapies against host proteins exploited by pathogens in order to circumvent these limitations. However, host-oriented drugs leave the pathogens unaffected and may result in continued pathogen dissemination. In this study we aimed to discover drugs that could simultaneously cross-inhibit pathogenic agents, as well as the host proteins that mediate their lethality. We observed that many pathogenic and host-assisting proteins belong to the same functional class. In doing so we targeted a protease component of anthrax toxin as well as host proteases exploited by this toxin. We identified two approved drugs, ascorbic acid 6-palmitate and salmon sperm protamine, that effectively inhibited anthrax cytotoxic protease and demonstrated that they also block proteolytic activities of host furin, cathepsin B, and caspases that mediate toxin's lethality in cells. We demonstrated that these drugs are broad-spectrum and reduce cellular sensitivity to other bacterial toxins that require the same host proteases. This approach should be generally applicable to the discovery of simultaneous pathogen and host-targeting inhibitors of many additional pathogenic agents.


Asunto(s)
Ácido Ascórbico/farmacología , Toxinas Bacterianas/antagonistas & inhibidores , Péptido Hidrolasas/metabolismo , Protaminas/farmacología , Inhibidores de Proteasas/farmacología , Animales , Antígenos Bacterianos/metabolismo , Bacillus anthracis , Toxinas Bacterianas/metabolismo , Catepsina B/antagonistas & inhibidores , Catepsina B/metabolismo , Descubrimiento de Drogas , Furina/antagonistas & inhibidores , Furina/metabolismo , Interacciones Huésped-Patógeno/efectos de los fármacos , Masculino , Ratones , Proteolisis/efectos de los fármacos , Células RAW 264.7 , Salmón/metabolismo , Espermatozoides/metabolismo
2.
Sci Rep ; 6: 34475, 2016 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-27686742

RESUMEN

Diverse pathogenic agents often utilize overlapping host networks, and hub proteins within these networks represent attractive targets for broad-spectrum drugs. Using bacterial toxins, we describe a new approach for discovering broad-spectrum therapies capable of inhibiting host proteins that mediate multiple pathogenic pathways. This approach can be widely used, as it combines genetic-based target identification with cell survival-based and protein function-based multiplex drug screens, and concurrently discovers therapeutic compounds and their protein targets. Using B-lymphoblastoid cells derived from the HapMap Project cohort of persons of African, European, and Asian ancestry we identified host caspases as hub proteins that mediate the lethality of multiple pathogenic agents. We discovered that an approved drug, Bithionol, inhibits host caspases and also reduces the detrimental effects of anthrax lethal toxin, diphtheria toxin, cholera toxin, Pseudomonas aeruginosa exotoxin A, Botulinum neurotoxin, ricin, and Zika virus. Our study reveals the practicality of identifying host proteins that mediate multiple disease pathways and discovering broad-spectrum therapies that target these hub proteins.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA