RESUMEN
ABSTRACT: A total of 482 veal cutlet, 555 ground veal, and 540 ground beef samples were purchased from retail establishments in the mid-Atlantic region of the United States over a noncontiguous 2-year period between 2014 and 2017. Samples (325 g each) were individually enriched and screened via real-time PCR for all seven regulated serogroups of Shiga toxin-producing Escherichia coli (STEC). Presumptive STEC-positive samples were subjected to serogroup-specific immunomagnetic separation and plated onto selective media. Up to five isolates typical for STEC from each sample were analyzed via multiplex PCR for both the virulence genes (i.e., eae, stx1 and/or stx2, and ehxA) and serogroup-specific gene(s) for the seven regulated STEC serogroups. The recovery rates of non-O157 STEC from veal cutlets (3.94%, 19 of 482 samples) and ground veal (7.03%, 39 of 555 samples) were significantly higher (P < 0.05) than that from ground beef (0.93%, 5 of 540 samples). In contrast, only a single isolate of STEC O157:H7 was recovered; this isolate originated from 1 (0.18%) of 555 samples of ground veal. Recovery rates for STEC were not associated with state, season, packaging type, or store type (P > 0.05) but were associated with brand and fat content (P < 0.05). Pulsed-field subtyping of the 270 viable and confirmed STEC isolates from the 64 total samples testing positive revealed 78 pulsotypes (50 to 80% similarity) belonging to 39 pulsogroups, with ≥90% similarity among pulsotypes within pulsogroups. Multiple isolates from 43 (67.7%) of 64 samples testing positive had an indistinguishable pulsotype. STEC serotypes O26 and O103 were the most prevalent serogroups in beef and veal, respectively. These findings support related findings from regulatory sampling studies over the past decade and confirm that recovery rates for the regulated STEC serogroups are higher for raw veal than for raw beef samples, as was observed in the present study of meat purchased at food retailers in the mid-Atlantic region of the United States.
Asunto(s)
Proteínas de Escherichia coli , Carne Roja , Escherichia coli Shiga-Toxigénica , Animales , Bovinos , Proteínas de Escherichia coli/genética , Carne , Mid-Atlantic Region , Serogrupo , Estados UnidosRESUMEN
Meat bars are dried snacks containing a mixture of meat, berries, and nuts. To explore consumer awareness of meat bars, we conducted two online, nationally representative surveys and established that 70.8% (743 of 1,050) of U.S. citizens were unfamiliar with this product. When asked to check all answers that applied, most of the 545 respondents (who were recruited based on their familiarity with meat bars) preferred beef (n = 385) as the protein source, followed by chicken (n = 293), pork (n = 183), and turkey (n = 179). Most meat bars were purchased from grocery stores (n = 447), followed by online orders (n = 130) and outdoor stores (n = 120). When asked specifically whether they made their own meat bars, 17.8% of respondents (97 of 545) replied "yes," the majority (52 of 97, 54%) of which obtained recipes online. Some 69.1% (67 of 97) measured the internal temperature of the meat during dehydration, but only 10.3% (10 of 97) confirmed the internal temperature by using a thermometer. Given the paucity of information available on the fate of pathogenic or spoilage bacteria associated with meat bars, as another component of this study, batter was prepared with or without encapsulated citric acid (ECA; 0.74%) added to a formulation of ground beef (65%; 90% lean, 10% fat), chopped pecans (15%), golden flaxseed flour (9.7%), chopped cranberries (5.0%), chopped sunflower seeds (3.1%), sea salt (1.1%), black pepper (0.8%), and celery powder (0.35%). Batter was inoculated (ca. 6.5 log CFU/g) with Shiga toxin-producing Escherichia coli (STEC), portioned by hand (40 ± 0.1 g each), and then dried in a commercial dehydrator. Regardless of the drying treatment, inclusion of ECA in the batter resulted in a pH decrease from ca. 5.5 to ca. 4.7 to 5.0 in the finished product. Without ECA, when meat bars were dried at 62.8°C for 6 h, 71.1°C for 4 h, or 62.8°C for 2 h and then 71.1°C for 2 h, levels of STEC decreased by ca. 6.2, 6.3, or 5.2 log CFU/g, respectively. With ECA, STEC decreased by ca. 6.0, 6.6, or 6.0 log CFU/g in meat bars dried at 62.8°C for 6 h, 71.1°C for 4 h, or 62.8°C for 2 h and then 71.1°C for 2 h, respectively. Our results confirmed that a ≥5.0-log reduction in STEC could be achieved in meat bars formulated with or without ECA under all dehydration conditions tested.