Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 187(11): 2652-2656, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38788688

RESUMEN

Mechanobiology-the field studying how cells produce, sense, and respond to mechanical forces-is pivotal in the analysis of how cells and tissues take shape in development and disease. As we venture into the future of this field, pioneers share their insights, shaping the trajectory of future research and applications.


Asunto(s)
Biofisica , Animales , Humanos , Fenómenos Biomecánicos , Forma de la Célula , Mecanotransducción Celular
2.
Cell ; 171(6): 1397-1410.e14, 2017 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-29107331

RESUMEN

YAP is a mechanosensitive transcriptional activator with a critical role in cancer, regeneration, and organ size control. Here, we show that force applied to the nucleus directly drives YAP nuclear translocation by decreasing the mechanical restriction of nuclear pores to molecular transport. Exposure to a stiff environment leads cells to establish a mechanical connection between the nucleus and the cytoskeleton, allowing forces exerted through focal adhesions to reach the nucleus. Force transmission then leads to nuclear flattening, which stretches nuclear pores, reduces their mechanical resistance to molecular transport, and increases YAP nuclear import. The restriction to transport is further regulated by the mechanical stability of the transported protein, which determines both active nuclear transport of YAP and passive transport of small proteins. Our results unveil a mechanosensing mechanism mediated directly by nuclear pores, demonstrated for YAP but with potential general applicability in transcriptional regulation.


Asunto(s)
Transporte Activo de Núcleo Celular , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Poro Nuclear/metabolismo , Fosfoproteínas/metabolismo , Animales , Fenómenos Biomecánicos , Proteínas de Ciclo Celular , Línea Celular Tumoral , Núcleo Celular/metabolismo , Humanos , Ratones , Factores de Transcripción , Transcripción Genética , Proteínas Señalizadoras YAP
3.
Nature ; 611(7936): 603-613, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36352230

RESUMEN

Around 30-40% of patients with colorectal cancer (CRC) undergoing curative resection of the primary tumour will develop metastases in the subsequent years1. Therapies to prevent disease relapse remain an unmet medical need. Here we uncover the identity and features of the residual tumour cells responsible for CRC relapse. An analysis of single-cell transcriptomes of samples from patients with CRC revealed that the majority of genes associated with a poor prognosis are expressed by a unique tumour cell population that we named high-relapse cells (HRCs). We established a human-like mouse model of microsatellite-stable CRC that undergoes metastatic relapse after surgical resection of the primary tumour. Residual HRCs occult in mouse livers after primary CRC surgery gave rise to multiple cell types over time, including LGR5+ stem-like tumour cells2-4, and caused overt metastatic disease. Using Emp1 (encoding epithelial membrane protein 1) as a marker gene for HRCs, we tracked and selectively eliminated this cell population. Genetic ablation of EMP1high cells prevented metastatic recurrence and mice remained disease-free after surgery. We also found that HRC-rich micrometastases were infiltrated with T cells, yet became progressively immune-excluded during outgrowth. Treatment with neoadjuvant immunotherapy eliminated residual metastatic cells and prevented mice from relapsing after surgery. Together, our findings reveal the cell-state dynamics of residual disease in CRC and anticipate that therapies targeting HRCs may help to avoid metastatic relapse.


Asunto(s)
Neoplasias Colorrectales , Metástasis de la Neoplasia , Proteínas de Neoplasias , Recurrencia Local de Neoplasia , Neoplasia Residual , Receptores de Superficie Celular , Animales , Humanos , Ratones , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/terapia , Progresión de la Enfermedad , Proteínas de Neoplasias/deficiencia , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Recurrencia Local de Neoplasia/genética , Recurrencia Local de Neoplasia/patología , Recurrencia Local de Neoplasia/prevención & control , Recurrencia Local de Neoplasia/terapia , Neoplasia Residual/genética , Neoplasia Residual/patología , Receptores de Superficie Celular/deficiencia , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Metástasis de la Neoplasia/genética , Metástasis de la Neoplasia/patología , Metástasis de la Neoplasia/prevención & control , Metástasis de la Neoplasia/terapia , Modelos Animales de Enfermedad , Linfocitos T/citología , Linfocitos T/inmunología , Linfocitos Infiltrantes de Tumor/citología , Linfocitos Infiltrantes de Tumor/inmunología , Terapia Neoadyuvante , Inmunoterapia
4.
Nat Rev Mol Cell Biol ; 21(5): 253, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31974399
5.
J Cell Sci ; 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39120491

RESUMEN

Cells sense and respond to mechanical forces through mechanotransduction, which regulates processes in health and disease. In single adhesive cells, mechanotransduction involves the transmission of force from the extracellular matrix to the cell nucleus, where it affects nucleocytoplasmic transport (NCT) and the subsequent nuclear localization of transcriptional regulators such as YAP. However, if and how NCT is mechanosensitive in multicellular systems is unclear. Here, we characterize and use a fluorescent sensor of nucleocytoplasmic transport (Sencyt) and demonstrate that nucleocytoplasmic transport responds to mechanics but not cell density in cell monolayers. Using monolayers of both epithelial and mesenchymal phenotype, we show that NCT is altered in response both to osmotic shocks, and to the inhibition of cell contractility. Further, NCT correlates with the degree of nuclear deformation measured through nuclear solidity, a shape parameter related to nuclear envelope tension. In contrast, YAP but NCT is sensitive to cell density, showing that YAP response to cell-cell contacts is not via a mere mechanical effect of NCT. Our results demonstrate the generality of the mechanical regulation of NCT.

6.
Nat Mater ; 22(11): 1409-1420, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37709930

RESUMEN

The mechanical properties of the extracellular matrix dictate tissue behaviour. In epithelial tissues, laminin is a very abundant extracellular matrix component and a key supporting element. Here we show that laminin hinders the mechanoresponses of breast epithelial cells by shielding the nucleus from mechanical deformation. Coating substrates with laminin-111-unlike fibronectin or collagen I-impairs cell response to substrate rigidity and YAP nuclear localization. Blocking the laminin-specific integrin ß4 increases nuclear YAP ratios in a rigidity-dependent manner without affecting the cell forces or focal adhesions. By combining mechanical perturbations and mathematical modelling, we show that ß4 integrins establish a mechanical linkage between the substrate and keratin cytoskeleton, which stiffens the network and shields the nucleus from actomyosin-mediated mechanical deformation. In turn, this affects the nuclear YAP mechanoresponses, chromatin methylation and cell invasion in three dimensions. Our results demonstrate a mechanism by which tissues can regulate their sensitivity to mechanical signals.


Asunto(s)
Queratinas , Laminina , Laminina/metabolismo , Adhesión Celular , Matriz Extracelular/metabolismo , Fibronectinas/metabolismo , Citoesqueleto/metabolismo , Integrinas/metabolismo
7.
Nature ; 563(7730): 203-208, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30401836

RESUMEN

Fundamental biological processes are carried out by curved epithelial sheets that enclose a pressurized lumen. How these sheets develop and withstand three-dimensional deformations has remained unclear. Here we combine measurements of epithelial tension and shape with theoretical modelling to show that epithelial sheets are active superelastic materials. We produce arrays of epithelial domes with controlled geometry. Quantification of luminal pressure and epithelial tension reveals a tensional plateau over several-fold areal strains. These extreme strains in the tissue are accommodated by highly heterogeneous strains at a cellular level, in seeming contradiction to the measured tensional uniformity. This phenomenon is reminiscent of superelasticity, a behaviour that is generally attributed to microscopic material instabilities in metal alloys. We show that in epithelial cells this instability is triggered by a stretch-induced dilution of the actin cortex, and is rescued by the intermediate filament network. Our study reveals a type of mechanical behaviour-which we term active superelasticity-that enables epithelial sheets to sustain extreme stretching under constant tension.


Asunto(s)
Elasticidad , Células Epiteliales/citología , Actinas/metabolismo , Aleaciones , Animales , Fenómenos Biomecánicos , Células CACO-2 , Forma de la Célula , Tamaño de la Célula , Citocalasina D/metabolismo , Perros , Células Epiteliales/metabolismo , Humanos , Filamentos Intermedios/metabolismo , Células de Riñón Canino Madin Darby , Presión
8.
Chaos ; 34(1)2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38260936

RESUMEN

Circadian rhythms are archetypal examples of nonlinear oscillations. While these oscillations are usually attributed to circuits of biochemical interactions among clock genes and proteins, recent experimental studies reveal that they are also affected by the cell's mechanical environment. Here, we extend a standard biochemical model of circadian rhythmicity to include mechanical effects in a parametric manner. Using experimental observations to constrain the model, we suggest specific ways in which the mechanical signal might affect the clock. Additionally, a bifurcation analysis of the system predicts that these mechanical signals need to be within an optimal range for circadian oscillations to occur.


Asunto(s)
Ritmo Circadiano
9.
Int J Cancer ; 152(10): 2153-2165, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-36705298

RESUMEN

Tumor secreted extracellular vesicles (EVs) are potent intercellular signaling platforms. They are responsible for the accommodation of the premetastatic niche (PMN) to support cancer cell engraftment and metastatic growth. However, complex cancer cell composition within the tumor increases also the heterogeneity among cancer secreted EVs subsets, a functional diversity that has been poorly explored. This phenomenon is particularly relevant in highly plastic and heterogenous triple-negative breast cancer (TNBC), in which a significant representation of malignant cancer stem cells (CSCs) is displayed. Herein, we selectively isolated and characterized EVs from CSC or differentiated cancer cells (DCC; EVsCSC and EVsDCC , respectively) from the MDA-MB-231 TNBC cell line. Our results showed that EVsCSC and EVsDCC contain distinct bioactive cargos and therefore elicit a differential effect on stromal cells in the TME. Specifically, EVsDCC activated secretory cancer associated fibroblasts (CAFs), triggering IL-6/IL-8 signaling and sustaining CSC phenotype maintenance. Complementarily, EVsCSC promoted the activation of α-SMA+ myofibroblastic CAFs subpopulations and increased the endothelial remodeling, enhancing the invasive potential of TNBC cells in vitro and in vivo. In addition, solely the EVsCSC mediated signaling prompted the transformation of healthy lungs into receptive niches able to support metastatic growth of breast cancer cells.


Asunto(s)
Vesículas Extracelulares , Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/patología , Línea Celular Tumoral , Vesículas Extracelulares/patología , Células Madre Neoplásicas/metabolismo , Pulmón/patología , Microambiente Tumoral
10.
Nat Mater ; 21(10): 1200-1210, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35637338

RESUMEN

Growing evidence suggests that the physical properties of the cellular microenvironment influence cell migration. However, it is not currently understood how active physical remodelling by cells affects migration dynamics. Here we report that cell clusters seeded on deformable collagen-I networks display persistent collective migration despite not showing any apparent intrinsic polarity. Clusters generate transient gradients in collagen density and alignment due to viscoelastic relaxation of the collagen networks. Combining theory and experiments, we show that crosslinking collagen networks or reducing cell cluster size results in reduced network deformation, shorter viscoelastic relaxation time and smaller gradients, leading to lower migration persistence. Traction force and Brillouin microscopy reveal asymmetries in force distributions and collagen stiffness during migration, providing evidence of mechanical cross-talk between cells and their substrate during migration. This physical model provides a mechanism for self-generated directional migration on viscoelastic substrates in the absence of internal biochemical polarity cues.


Asunto(s)
Colágeno , Matriz Extracelular , Movimiento Celular , Fenómenos Mecánicos
11.
Phys Rev Lett ; 131(5): 058101, 2023 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-37595243

RESUMEN

Inspired by massive intermediate filament (IF) reorganization in superstretched epithelia, we examine computationally the principles controlling the mechanics of a set of entangled filaments whose ends slide on the cell boundary. We identify an entanglement metric and threshold beyond which random loose networks respond nonaffinely and nonlinearly to stretch by self-organizing into structurally optimal star-shaped configurations. A simple model connecting cellular and filament strains links emergent mechanics to cell geometry, network topology, and filament mechanics. We identify a safety net mechanism in IF networks and provide a framework to harness entanglement in soft fibrous materials.

13.
Nature ; 552(7684): 219-224, 2017 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-29211717

RESUMEN

Cells can sense the density and distribution of extracellular matrix (ECM) molecules by means of individual integrin proteins and larger, integrin-containing adhesion complexes within the cell membrane. This spatial sensing drives cellular activity in a variety of normal and pathological contexts. Previous studies of cells on rigid glass surfaces have shown that spatial sensing of ECM ligands takes place at the nanometre scale, with integrin clustering and subsequent formation of focal adhesions impaired when single integrin-ligand bonds are separated by more than a few tens of nanometres. It has thus been suggested that a crosslinking 'adaptor' protein of this size might connect integrins to the actin cytoskeleton, acting as a molecular ruler that senses ligand spacing directly. Here, we develop gels whose rigidity and nanometre-scale distribution of ECM ligands can be controlled and altered. We find that increasing the spacing between ligands promotes the growth of focal adhesions on low-rigidity substrates, but leads to adhesion collapse on more-rigid substrates. Furthermore, disordering the ligand distribution drastically increases adhesion growth, but reduces the rigidity threshold for adhesion collapse. The growth and collapse of focal adhesions are mirrored by, respectively, the nuclear or cytosolic localization of the transcriptional regulator protein YAP. We explain these findings not through direct sensing of ligand spacing, but by using an expanded computational molecular-clutch model, in which individual integrin-ECM bonds-the molecular clutches-respond to force loading by recruiting extra integrins, up to a maximum value. This generates more clutches, redistributing the overall force among them, and reducing the force loading per clutch. At high rigidity and high ligand spacing, maximum recruitment is reached, preventing further force redistribution and leading to adhesion collapse. Measurements of cellular traction forces and actin flow speeds support our model. Our results provide a general framework for how cells sense spatial and physical information at the nanoscale, precisely tuning the range of conditions at which they form adhesions and activate transcriptional regulation.


Asunto(s)
Membrana Celular/metabolismo , Matriz Extracelular/metabolismo , Adhesiones Focales , Integrinas/metabolismo , Ligandos , Modelos Biológicos , Actinas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Proteínas de Ciclo Celular , Membrana Celular/química , Matriz Extracelular/química , Regulación de la Expresión Génica , Humanos , Ratones , Miosinas/metabolismo , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Docilidad , Factores de Transcripción/metabolismo , Transcripción Genética , Proteínas Señalizadoras YAP
14.
Nat Mater ; 20(2): 145-155, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33199860

RESUMEN

In recent years considerable progress has been made in the development of faithful procedures for the differentiation of human pluripotent stem cells (hPSCs). An important step in this direction has also been the derivation of organoids. This technology generally relies on traditional three-dimensional culture techniques that exploit cell-autonomous self-organization responses of hPSCs with minimal control over the external inputs supplied to the system. The convergence of stem cell biology and bioengineering offers the possibility to provide these stimuli in a controlled fashion, resulting in the development of naturally inspired approaches to overcome major limitations of this nascent technology. Based on the current developments, we emphasize the achievements and ongoing challenges of bringing together hPSC organoid differentiation, bioengineering and ethics. This Review underlines the need for providing engineering solutions to gain control of self-organization and functionality of hPSC-derived organoids. We expect that this knowledge will guide the community to generate higher-grade hPSC-derived organoids for further applications in developmental biology, drug screening, disease modelling and personalized medicine.


Asunto(s)
Bioingeniería , Organoides/crecimiento & desarrollo , Células Madre Pluripotentes/metabolismo , Humanos , Organoides/citología , Células Madre Pluripotentes/citología
16.
Nat Mater ; 19(2): 227-238, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31659294

RESUMEN

The isotropic or anisotropic organization of biological extracellular matrices has important consequences for tissue function. We study emergent anisotropy using fibroblasts that generate varying degrees of matrix alignment from uniform starting conditions. This reveals that the early migratory paths of fibroblasts are correlated with subsequent matrix organization. Combined experimentation and adaptation of Vicsek modelling demonstrates that the reorientation of cells relative to each other following collision plays a role in generating matrix anisotropy. We term this behaviour 'cell collision guidance'. The transcription factor TFAP2C regulates cell collision guidance in part by controlling the expression of RND3. RND3 localizes to cell-cell collision zones where it downregulates actomyosin activity. Cell collision guidance fails without this mechanism in place, leading to isotropic matrix generation. The cross-referencing of alignment and TFAP2C gene expression signatures against existing datasets enables the identification and validation of several classes of pharmacological agents that disrupt matrix anisotropy.


Asunto(s)
Matriz Extracelular/metabolismo , Fibroblastos/citología , Factor de Transcripción AP-2/metabolismo , Anisotropía , Fibroblastos/metabolismo , Humanos
17.
Proc Natl Acad Sci U S A ; 115(8): 1925-1930, 2018 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-29432180

RESUMEN

Actin polymerization and assembly into stress fibers (SFs) is central to many cellular processes. However, how SFs form in response to the mechanical interaction of cells with their environment is not fully understood. Here we have identified Piezo2 mechanosensitive cationic channel as a transducer of environmental physical cues into mechanobiological responses. Piezo2 is needed by brain metastatic cells from breast cancer (MDA-MB-231-BrM2) to probe their physical environment as they anchor and pull on their surroundings or when confronted with confined migration through narrow pores. Piezo2-mediated Ca2+ influx activates RhoA to control the formation and orientation of SFs and focal adhesions (FAs). A possible mechanism for the Piezo2-mediated activation of RhoA involves the recruitment of the Fyn kinase to the cell leading edge as well as calpain activation. Knockdown of Piezo2 in BrM2 cells alters SFs, FAs, and nuclear translocation of YAP; a phenotype rescued by overexpression of dominant-positive RhoA or its downstream effector, mDia1. Consequently, hallmarks of cancer invasion and metastasis related to RhoA, actin cytoskeleton, and/or force transmission, such as migration, extracellular matrix degradation, and Serpin B2 secretion, were reduced in cells lacking Piezo2.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Canales Iónicos/metabolismo , Mecanotransducción Celular/fisiología , Proteína de Unión al GTP rhoA/metabolismo , Citoesqueleto de Actina/genética , Calcio/metabolismo , Línea Celular Tumoral , Movimiento Celular , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , Canales Iónicos/genética , Proteína de Unión al GTP rhoA/genética
18.
J Cell Sci ; 131(6)2018 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-29487179

RESUMEN

This study reports novel findings that link E-cadherin (also known as CDH1)-mediated force-transduction signaling to vinculin targeting to intercellular junctions via epidermal growth factor receptor (EGFR) and integrins. These results build on previous findings that demonstrated that mechanically perturbed E-cadherin receptors activate phosphoinositide 3-kinase and downstream integrins in an EGFR-dependent manner. Results of this study show that this EGFR-mediated kinase cascade controls the force-dependent recruitment of vinculin to stressed E-cadherin complexes - a key early signature of cadherin-based mechanotransduction. Vinculin targeting requires its phosphorylation at tyrosine 822 by Abl family kinases (hereafter Abl), but the origin of force-dependent Abl activation had not been identified. We now present evidence that integrin activation, which is downstream of EGFR signaling, controls Abl activation, thus linking E-cadherin to Abl through a mechanosensitive signaling network. These findings place EGFR and integrins at the center of a positive-feedback loop, through which force-activated E-cadherin signals regulate vinculin recruitment to cadherin complexes in response to increased intercellular tension.This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Cadherinas/metabolismo , Receptores ErbB/metabolismo , Integrinas/metabolismo , Uniones Intercelulares/metabolismo , Vinculina/química , Vinculina/metabolismo , Cadherinas/genética , Línea Celular Tumoral , Receptores ErbB/genética , Humanos , Integrinas/genética , Uniones Intercelulares/genética , Mecanotransducción Celular , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Unión Proteica , Vinculina/genética
19.
Nat Mater ; 18(9): 1015-1023, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31160803

RESUMEN

Epithelial repair and regeneration are driven by collective cell migration and division. Both cellular functions involve tightly controlled mechanical events, but how physical forces regulate cell division in migrating epithelia is largely unknown. Here we show that cells dividing in the migrating zebrafish epicardium exert large cell-extracellular matrix (ECM) forces during cytokinesis. These forces point towards the division axis and are exerted through focal adhesions that connect the cytokinetic ring to the underlying ECM. When subjected to high loading rates, these cytokinetic focal adhesions prevent closure of the contractile ring, leading to multi-nucleation through cytokinetic failure. By combining a clutch model with experiments on substrates of different rigidity, ECM composition and ligand density, we show that failed cytokinesis is triggered by adhesion reinforcement downstream of increased myosin density. The mechanical interaction between the cytokinetic ring and the ECM thus provides a mechanism for the regulation of cell division and polyploidy that may have implications in regeneration and cancer.


Asunto(s)
División Celular , Citocinesis , Pericardio/citología , Poliploidía , Pez Cebra , Animales , Matriz Extracelular
20.
Nat Mater ; 18(4): 397-405, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30778227

RESUMEN

The generation of organoids is one of the biggest scientific advances in regenerative medicine. Here, by lengthening the time that human pluripotent stem cells (hPSCs) were exposed to a three-dimensional microenvironment, and by applying defined renal inductive signals, we generated kidney organoids that transcriptomically matched second-trimester human fetal kidneys. We validated these results using ex vivo and in vitro assays that model renal development. Furthermore, we developed a transplantation method that utilizes the chick chorioallantoic membrane. This approach created a soft in vivo microenvironment that promoted the growth and differentiation of implanted kidney organoids, as well as providing a vascular component. The stiffness of the in ovo chorioallantoic membrane microenvironment was recapitulated in vitro by fabricating compliant hydrogels. These biomaterials promoted the efficient generation of renal vesicles and nephron structures, demonstrating that a soft environment accelerates the differentiation of hPSC-derived kidney organoids.


Asunto(s)
Espacio Extracelular/metabolismo , Riñón/citología , Organoides/citología , Células Madre Pluripotentes/citología , Técnicas de Cultivo de Tejidos/métodos , Diferenciación Celular , Microambiente Celular , Femenino , Humanos , Cinética , Células Madre Pluripotentes/metabolismo , Embarazo , Tercer Trimestre del Embarazo , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA