Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phys Rev Lett ; 84(5): 919-22, 2000 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-11017405

RESUMEN

Under energetic ion bombardment, amorphous materials deform plastically in the form of anisotropic growth. At medium electronic stopping power (5 to 30 keV/nm) this phenomenon starts only after a certain incubation dose depending on values of the electronic stopping power and temperature. This delay is modeled on the basis of the assumption of a drastic irradiation induced viscosity reduction, resulting from accumulation of atomic displacements in the matrix and local material heating in the heavy ion track. A simple analytical expression is derived which is in a good agreement with experimental data for the amorphous alloy Fe85B15.

2.
Phys Rev Lett ; 85(17): 3648-51, 2000 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-11030972

RESUMEN

In a recently developed model of ion beam induced plastic deformation of amorphous solids, ion tracks are described as cylindrical thermoelastic inclusions formed upon local heating and shear stress relaxation along the ion trajectories. According to this model, track formation can be influenced or even suppressed by an applied stress. This model prediction is tested by studying the influence of stress on the etching of tracks of 2.4 GeV Pb in foil samples of the glassy metal Fe 81B 13.5Si 3.5C (2), where a compressive in-plane stress was built up in limited zones by preirradiation with a high fluence of 200 MeV Xe ions. The variation of the size of the observed etch pits with the local stress is found to be consistent with the model predictions, thus confirming the thermal spike origin of the tracks.

3.
Phys Rev Lett ; 74(25): 5072-5075, 1995 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-10058676
4.
Phys Rev B Condens Matter ; 44(9): 4206-4213, 1991 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-10000069
7.
Phys Rev B Condens Matter ; 34(6): 4364-4367, 1986 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-9940213
8.
Phys Rev B Condens Matter ; 40(2): 1277-1281, 1989 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-9991954
10.
Phys Rev Lett ; 88(5): 055505, 2002 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-11863744

RESUMEN

In this work, the evolution of gas-filled cracks under gas implantation and subsequent annealing is studied on the basis of an elastic continuum approach. The observed growth limitation of He-filled nanocracks in SiC is attributed to their stabilization by the formation of circular dislocation dipoles. The formation and Ostwald ripening of bubble-loop complexes at elevated temperatures is modeled in terms of gas atom exchange between such complexes coupled with local matrix atom exchange between bubbles and loops of the same complex. The scaling laws derived for the time dependence of bubble and loop sizes are found to be in good agreement with experimental data.

11.
Microsc Microanal ; 10(2): 199-214, 2004 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15306046

RESUMEN

The pressure of crack-shaped cavities formed in silicon upon implantation with helium and subsequent annealing is quantitatively determined from the measurement of diffraction contrast features visible in transmission electron micrographs taken under well-defined dynamical two-beam conditions. For this purpose, simulated images, based on the elastic displacements associated with a Griffith crack, are matched to experimental micrographs, thus yielding unambiguous quantitative data on the ratio p of the cavity pressure to the silicon matrix shear modulus. Experimental results demonstrate cavity radii of some 10 nm and p values up to 0.22, which may be regarded as sufficiently high for the emission of dislocation loops from the cracks.


Asunto(s)
Helio/química , Microscopía Electrónica/métodos , Silicio/química , Elasticidad , Estrés Mecánico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA