Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Mamm Genome ; 34(2): 123-155, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37160810

RESUMEN

Echocardiography is a non-invasive imaging technique providing real-time information to assess the structure and function of the heart. Due to advancements in technology, ultra-high-frequency transducers have enabled the translation of ultrasound from humans to small animals due to resolutions down to 30 µm. Most studies are performed using mice and rats, with ages ranging from embryonic, to neonatal, and adult. In addition, alternative models such as zebrafish and chicken embryos are becoming more frequently used. With the achieved high temporal and spatial resolution in real-time, cardiac function can now be monitored throughout the lifespan of these small animals to investigate the origin and treatment of a range of acute and chronic pathological conditions. With the increased relevance of in vivo real-time imaging, there is still an unmet need for the standardisation of small animal echocardiography and the appropriate cardiac measurements that should be reported in preclinical cardiac models. This review focuses on the development of standardisation in preclinical echocardiography and reports appropriate cardiac measurements throughout the lifespan of rodents: embryonic, neonatal, ageing, and acute and chronic pathologies. Lastly, we will discuss the future of cardiac preclinical ultrasound.


Asunto(s)
Ecocardiografía , Pez Cebra , Embrión de Pollo , Humanos , Ratones , Ratas , Animales , Ecocardiografía/métodos , Corazón/diagnóstico por imagen
2.
Ultrasound Med Biol ; 47(4): 1099-1107, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33455807

RESUMEN

Tumor oxygenation and vascularization are important parameters that determine the aggressiveness of the tumor and its resistance to cancer therapies. We introduce dual-modality ultrasound and photoacoustic imaging (US-PAI) for the direct, non-invasive real-time in vivo evaluation of oxygenation and vascularization of patient-derived xenografts (PDXs) of B-cell mantle cell lymphomas. The different optical properties of oxyhemoglobin and deoxyhemoglobin make it possible to determine oxygen saturation (sO2) in tissues using PAI. High-frequency color Doppler imaging enables the visualization of blood flow with high resolution. Tumor oxygenation and vascularization were studied in vivo during the growth of three different subcutaneously implanted patient-derived xenograft (PDX) lymphomas (VFN-M1, VFN-M2 and VFN-M5 R1). Similar values of sO2 (sO2 Vital), determined from US-PAI volumetric analysis, were obtained in small and large VFN-M1 tumors ranging from 37.9 ± 2.2 to 40.5 ± 6.0 sO2 Vital (%) and 37.5 ± 4.0 to 35.7 ± 4.6 sO2 Vital (%) for small and large VFN-M2 PDXs. In contrast, the higher sO2 Vital values ranging from 57.1 ± 4.8 to 40.8 ± 5.7 sO2 Vital (%) (small to large) of VFN-M5 R1 tumors corresponds with the higher aggressiveness of that PDX model. The different tumor percentage vascularization (assessed as micro-vessel areas) of VFN-M1, VFN-M2 and VFN-M5 R1 obtained by color Doppler (2.8 ± 0.1%, 3.8 ± 0.8% and 10.3 ± 2.7%) in large-stage tumors clearly corresponds with their diverse growth and aggressiveness. The data obtained by color Doppler were validated by histology. In conclusion, US-PAI rapidly and accurately provided relevant and reproducible information on tissue oxygenation in PDX tumors in real time without the need for a contrast agent.


Asunto(s)
Linfoma de Células del Manto/diagnóstico por imagen , Linfoma de Células del Manto/fisiopatología , Neovascularización Patológica/diagnóstico por imagen , Oxígeno/metabolismo , Técnicas Fotoacústicas , Ultrasonografía Doppler en Color , Animales , Hipoxia de la Célula , Femenino , Hemoglobinas/metabolismo , Humanos , Linfoma de Células del Manto/patología , Ratones , Densidad Microvascular , Microvasos/diagnóstico por imagen , Imagen Multimodal , Trasplante de Neoplasias , Oxihemoglobinas/metabolismo , Carga Tumoral
3.
J Biophotonics ; 9(8): 792-9, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-26913984

RESUMEN

The polyelectrolyte microcapsules that can be accurate either visualized in biological media or in tissue would enhance their further in vivo application both as a carrier of active payloads and as a specific sensor. The immobilization of active species, for instance fluorescent dyes, quantum dots, metal nanoparticles, in polymeric shell enables visualization of capsules by optical imaging techniques in aqueous solution. However, for visualization of capsules in complex media an instrument with high contrast modality requires. Herein, we show for the first time photoacoustic imaging (PAI) of multifunctional microcapsules in water and in blood. The microcapsules exhibit greater photoacoustic intensity compare to microparticles with the same composition of polymeric shell presumably their higher thermal expansion. Photoacoustic intensity form microcapsules dispersed in blood displays an enhancement (2-fold) of signal compare to blood. Photoacoustic imaging of microcapsules might contribute to non-invasive carrier visualization and further their in vivo distribution.


Asunto(s)
Sangre/diagnóstico por imagen , Medios de Contraste/química , Técnicas Fotoacústicas , Polielectrolitos/química , Cápsulas , Nanotubos de Carbono , Polímeros , Agua
4.
ACS Appl Mater Interfaces ; 8(25): 16465-75, 2016 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-27269868

RESUMEN

Coupling graphene with a soft polymer surface offers the possibility to build hybrid constructs with new electrical, optical, and mechanical properties. However, the low reactivity of graphene is a hurdle in the synthesis of such systems which is often bypassed by oxidizing its carbon planar structure. However, the defects introduced with this process jeopardize the properties of graphene. In this paper we present a different approach, applicable to many different polymer surfaces, which uses surfactant assisted ultrasonication to exfoliate, and simultaneously suspend, graphene in water in its intact form. Tethering pristine graphene sheets to the surfaces is accomplished by using suitable reactive functional groups of the surfactant scaffold. We focused on applying this approach to the fabrication of a hybrid system, made of pristine graphene tethered to poly(vinyl alcohol) based microbubbles (PVA MBs), designed for enhancing photoacoustic signals. Photoacoustic imaging (PAI) is a powerful preclinical diagnostic tool which provides real time images at a resolution of 40 µm. The leap toward clinical imaging has so far been hindered by the limited tissues penetration of near-infrared (NIR) pulsed laser radiation. Many academic and industrial research laboratories have met this challenge by designing devices, each with pros and cons, to enhance the photoacoustic (PA) signal. The major advantages of the hybrid graphene/PVA MBs construct, however, are (i) the preservation of graphene properties, (ii) biocompatibility, a consequence of the robust anchoring of pristine graphene to the bioinert surface of the PVA bubble, and (iii) a very good enhancement in a NIR spectral region of the PA signal, which does not overlap with the signals of PA active endogenous molecules such as hemoglobin.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA