Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Biol Res ; 49: 2, 2016 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-26739707

RESUMEN

BACKGROUND: Vibrio parahaemolyticus (V. parahaemolyticus) is a Gram-negative, halophilic bacterium recognized as one of the most important foodborne pathogen. When ingested, V. parahaemolyticus causes a self-limiting illness (Vibriosis), characterized mainly by watery diarrhoea. Treatment is usually oral rehydration and/or antibiotics in complicated cases. Since 1996, the pathogenic and pandemic V. parahaemolyticus O3:K6 serotype has spread worldwide, increasing the reported number of vibriosis cases. Thus, the design of new strategies for pathogen control and illness prevention is necessary. Lactobacillus sp. grouped Gram positive innocuous bacteria, part of normal intestinal microbiota and usually used as oral vaccines for several diarrheic diseases. Recombinants strains of Lactobacillus (RL) expressing pathogen antigens can be used as part of an anti-adhesion strategy where RL block the pathogen union sites in host cells. Thus, we aimed to express MAM-7 V. parahaemolyticus adhesion protein in Lactobacillus sp. to generate an RL that prevents pathogen colonization. RESULTS: We cloned the MAM-7 gene from V. parahaemolyticus RIMD 2210633 in Lactobacillus expression vectors. Recombinant strains (Lactobacillus rhamnosus pSEC-MAM7 and L. rhamnosus pCWA-MAM7) adhered to CaCo-2 cells and competed with the pathogen. However, the L. rhamnosus wild type strain showed the best capacity to inhibit pathogen colonization in vitro. In addition, LDH-assay showed that recombinant strains were cytotoxic compared with the wild type isogenic strain. CONCLUSIONS: MAM-7 expression in lactobacilli reduces the intrinsic inhibitory capacity of L. rhamnosus against V. parahaemolyticus.


Asunto(s)
Adhesinas Bacterianas/análisis , Adhesión Bacteriana/fisiología , Lacticaseibacillus rhamnosus/fisiología , Vibrio parahaemolyticus/patogenicidad , Biopelículas/crecimiento & desarrollo , Células CACO-2 , Línea Celular , Citotoxicidad Inmunológica , Electroforesis en Gel de Poliacrilamida , Expresión Génica , Violeta de Genciana , Humanos , Reacción en Cadena de la Polimerasa , Vibriosis/prevención & control , Vibrio parahaemolyticus/crecimiento & desarrollo , Vibrio parahaemolyticus/metabolismo
2.
Curr Microbiol ; 69(4): 541-8, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24894907

RESUMEN

Crithidia fasciculata represents a very interesting model organism to study biochemical, cellular, and genetic processes unique to members of the family of the Trypanosomatidae. Thus, C. fasciculata parasitizes several species of insects and has been widely used to test new therapeutic strategies against parasitic infections. By using tunicamycin, a potent inhibitor of glycosylation in asparaginyl residues of glycoproteins (N-glycosylation), we demonstrate that N-glycosylation in C. fasciculata cells is involved in modulating glucose uptake, dramatically impacting growth, and cell adhesion. C. fasciculata treated with tunicamycin was severely affected in their ability to replicate and to adhere to polystyrene substrates and losing their ability to aggregate into small and large groups. Moreover, under tunicamycin treatment, the parasites were considerably shorter and rounder and displayed alterations in cytoplasmic vesicles formation. Furthermore, glucose uptake was significantly impaired in a tunicamycin dose-dependent manner; however, no cytotoxic effect was observed. Interestingly, this effect was reversible. Thus, when tunicamycin was removed from the culture media, the parasites recovered its growth rate, cell adhesion properties, and glucose uptake. Collectively, these results suggest that changes in the tunicamycin-dependent glycosylation levels can influence glucose uptake, cell growth, and adhesion in the protozoan parasite C. fasciculata.


Asunto(s)
Adhesión Celular/efectos de los fármacos , Crithidia fasciculata/efectos de los fármacos , Crithidia fasciculata/crecimiento & desarrollo , Glucosa/metabolismo , Tunicamicina/farmacología , Transporte Biológico/efectos de los fármacos , Crithidia fasciculata/citología , Crithidia fasciculata/metabolismo , Glicosilación/efectos de los fármacos
3.
PeerJ ; 11: e15235, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37434868

RESUMEN

Background: The Andean condor (Vultur gryphus) is the largest scavenger in South America. This predatory bird plays a crucial role in their ecological niche by removing carcasses. We report the first metagenomic analysis of the Andean condor gut microbiome. Methods: This work analyzed shotgun metagenomics data from a mixture of fifteen captive Chilean Andean condors. To filter eukaryote contamination, we employed BWA-MEM v0.7. Taxonomy assignment was performed using Kraken2 and MetaPhlAn v2.0 and all filtered reads were assembled using IDBA-UD v1.1.3. The two most abundant species were used to perform a genome reference-guided assembly using MetaCompass. Finally, we performed a gene prediction using Prodigal and each gene predicted was functionally annotated. InterproScan v5.31-70.0 was additionally used to detect homology based on protein domains and KEGG mapper software for reconstructing metabolic pathways. Results: Our results demonstrate concordance with the other gut microbiome data from New World vultures. In the Andean condor, Firmicutes was the most abundant phylum present, with Clostridium perfringens, a potentially pathogenic bacterium for other animals, as dominating species in the gut microbiome. We assembled all reads corresponding to the top two species found in the condor gut microbiome, finding between 94% to 98% of completeness for Clostridium perfringens and Plesiomonas shigelloides, respectively. Our work highlights the ability of the Andean condor to act as an environmental reservoir and potential vector for critical priority pathogens which contain relevant genetic elements. Among these genetic elements, we found 71 antimicrobial resistance genes and 1,786 virulence factors that we associated with several adaptation processes.


Asunto(s)
Falconiformes , Microbioma Gastrointestinal , Animales , Microbioma Gastrointestinal/genética , Metagenómica , Aclimatación , Chile , Clostridium perfringens
4.
Genome Announc ; 5(20)2017 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-28522725

RESUMEN

We present draft genome sequences of five Enterococcus species from patients suspected of Clostridium difficile infection. Genome completeness was confirmed by presence of bacterial orthologs (97%). Gene searches using Hidden-Markov models revealed that the isolates harbor between seven and 11 genes involved in antibiotic resistance to tetracyclines, beta-lactams, and vancomycin.

5.
PeerJ ; 4: e1950, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27114887

RESUMEN

Background. The honey bee (Apis mellifera) is the most important pollinator in agriculture worldwide. However, the number of honey bees has fallen significantly since 2006, becoming a huge ecological problem nowadays. The principal cause is CCD, or Colony Collapse Disorder, characterized by the seemingly spontaneous abandonment of hives by their workers. One of the characteristics of CCD in honey bees is the alteration of the bacterial communities in their gastrointestinal tract, mainly due to the decrease of Firmicutes populations, such as the Lactobacilli. At this time, the causes of these alterations remain unknown. We recently isolated a strain of Lactobacillus kunkeei (L. kunkeei strain MP2) from the gut of Chilean honey bees. L. kunkeei, is one of the most commonly isolated bacterium from the honey bee gut and is highly versatile in different ecological niches. In this study, we aimed to elucidate in detail, the L. kunkeei genetic background and perform a comparative genome analysis with other Lactobacillus species. Methods. L. kunkeei MP2 was originally isolated from the guts of Chilean A. mellifera individuals. Genome sequencing was done using Pacific Biosciences single-molecule real-time sequencing technology. De novo assembly was performed using Celera assembler. The genome was annotated using Prokka, and functional information was added using the EggNOG 3.1 database. In addition, genomic islands were predicted using IslandViewer, and pro-phage sequences using PHAST. Comparisons between L. kunkeei MP2 with other L. kunkeei, and Lactobacillus strains were done using Roary. Results. The complete genome of L. kunkeei MP2 comprises one circular chromosome of 1,614,522 nt. with a GC content of 36,9%. Pangenome analysis with 16 L. kunkeei strains, identified 113 unique genes, most of them related to phage insertions. A large and unique region of L. kunkeei MP2 genome contains several genes that encode for phage structural protein and replication components. Comparative analysis of MP2 with other Lactobacillus species, identified several unique genes of L. kunkeei MP2 related with metabolism, biofilm generation, survival under stress conditions, and mobile genetic elements (MGEs). Discussion. The presence of multiple mobile genetic elements, including phage sequences, suggest a high degree of genetic variability in L. kunkeei. Its versatility and ability to survive in different ecological niches (bee guts, flowers, fruits among others) could be given by its genetic capacity to change and adapt to different environments. L. kunkeei could be a new source of Lactobacillus with beneficial properties. Indeed, L. kunkeei MP2 could play an important role in honey bee nutrition through the synthesis of components as isoprenoids.

6.
Genome Announc ; 2(5)2014 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-25301653

RESUMEN

Here, we report the first draft genome sequence of Lactobacillus kunkeei strain MP2, isolated from a Chilean honeybee gut. The sequenced genome has a total size of 1.58 Mb distributed into 44 contigs and 1,356 protein-coding sequences.

7.
Genome Announc ; 2(5)2014 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-25323708

RESUMEN

We report here the draft genome sequence of a lethal pathogen of farmed salmonids, Piscirickettsia salmonis strain AUSTRAL-005. This virulent strain was isolated in 2008 from Oncorhynchus mykiss farms, and multiple genes involved in pathogenicity, environmental adaptation, and metabolic pathways were identified.

8.
FEMS Microbiol Lett ; 322(2): 150-6, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21707735

RESUMEN

Salmonella enterica serovar Typhi and Typhimurium are closely related serovars. However, S. Typhi, a human-specific pathogen, has 5% of genes as pseudogenes, far more than S. Typhimurium, which only has 1%. One of these pseudogenes corresponds to sopD2, which in S. Typhimurium encodes an effector protein involved in Salmonella-containing vacuole biogenesis in human epithelial cell lines, which is needed for full virulence of the pathogen. We investigated whether S. Typhi trans-complemented with the functional sopD2 gene from S. Typhimurium (sopD2(STM) ) would reduce the invasion of human epithelial cell lines. Our results showed that the presence of sopD2(STM) in S. Typhi significantly modified the bacterial ability to alter cellular permeability and decrease the CFUs recovered after cell invasion of human epithelial cell line. These results add to mounting evidence that pseudogenes contribute to S. Typhi adaptation to humans.


Asunto(s)
Células Epiteliales/microbiología , Seudogenes , Salmonella typhi/genética , Salmonella typhi/patogenicidad , Salmonella typhimurium/genética , Proteínas Bacterianas/genética , Secuencia de Bases , Permeabilidad de la Membrana Celular , Biología Computacional , Orden Génico , Células HT29 , Humanos , Datos de Secuencia Molecular , Salmonella typhi/metabolismo , Alineación de Secuencia
9.
Biol. Res ; 49: 1-10, 2016. ilus, graf
Artículo en Inglés | LILACS | ID: lil-774429

RESUMEN

BACKGROUND: Vibrio parahaemolyticus (V. parahaemolyticus) is a Gram-negative, halophilic bacterium recognized as one of the most important foodborne pathogen. When ingested, V. parahaemolyticus causes a self-limiting illness (Vibriosis), characterized mainly by watery diarrhoea. Treatment is usually oral rehydration and/or antibiotics in complicated cases. Since 1996, the pathogenic and pandemic V. parahaemolyticus O3:K6 serotype has spread worldwide, increasing the reported number of vibriosis cases. Thus, the design of new strategies for pathogen control and illness prevention is necessary. Lactobacillus sp. grouped Gram positive innocuous bacteria, part of normal intestinal microbiota and usually used as oral vaccines for several diarrheic diseases. Recombinants strains of Lactobacillus (RL) expressing pathogen antigens can be used as part of an anti-adhesion strategy where RL block the pathogen union sites in host cells. Thus, we aimed to express MAM-7 V. parahaemolyticus adhesion protein in Lactobacillus sp. to generate an RL that prevents pathogen colonization RESULTS: We cloned the MAM-7 gene from V. parahaemolyticus RIMD 2210633 in Lactobacillus expression vectors. Recombinant strains (Lactobacillus rhamnosus pSEC-MAM7 and L. rhamnosus pCWA-MAM7) adhered to CaCo-2 cells and competed with the pathogen. However, the L. rhamnosus wild type strain showed the best capacity to inhibit pathogen colonization in vitro. In addition, LDH-assay showed that recombinant strains were cytotoxic compared with the wild type isogenic strain CONCLUSIONS: MAM-7 expression in lactobacilli reduces the intrinsic inhibitory capacity of L. rhamnosus against V. parahaemolyticus.


Asunto(s)
Humanos , Adhesinas Bacterianas/análisis , Adhesión Bacteriana/fisiología , Lacticaseibacillus rhamnosus/fisiología , Vibrio parahaemolyticus/patogenicidad , Biopelículas/crecimiento & desarrollo , Línea Celular , Citotoxicidad Inmunológica , Electroforesis en Gel de Poliacrilamida , Expresión Génica , Violeta de Genciana , Reacción en Cadena de la Polimerasa , Vibriosis/prevención & control , Vibrio parahaemolyticus/crecimiento & desarrollo , Vibrio parahaemolyticus/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA