Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
RNA ; 29(10): 1535-1556, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37468167

RESUMEN

Scaffold attachment factor B (SAFB) is a conserved RNA-binding protein that is essential for early mammalian development. However, the functions of SAFB in mouse embryonic stem cells (ESCs) have not been characterized. Using RNA immunoprecipitation followed by RNA-seq (RIP-seq), we examined the RNAs associated with SAFB in wild-type and SAFB/SAFB2 double-knockout ESCs. SAFB predominantly associated with introns of protein-coding genes through purine-rich motifs. The transcript most enriched in SAFB association was the lncRNA Malat1, which also contains a purine-rich region in its 5' end. Knockout of SAFB/SAFB2 led to differential expression of approximately 1000 genes associated with multiple biological processes, including apoptosis, cell division, and cell migration. Knockout of SAFB/SAFB2 also led to splicing changes in a set of genes that were largely distinct from those that exhibited changes in expression level. The spliced and nascent transcripts of many genes whose expression levels were positively regulated by SAFB also associated with high levels of SAFB, implying that SAFB binding promotes their expression. Reintroduction of SAFB into double-knockout cells restored gene expression toward wild-type levels, an effect again observable at the level of spliced and nascent transcripts. Proteomics analysis revealed a significant enrichment of nuclear speckle-associated and RS domain-containing proteins among SAFB interactors. Neither Xist nor Polycomb functions were dramatically altered in SAFB/2 knockout ESCs. Our findings suggest that among other potential functions in ESCs, SAFB promotes the expression of certain genes through its ability to bind nascent RNA.


Asunto(s)
Células Madre Embrionarias de Ratones , ARN , Animales , Ratones , Expresión Génica , Intrones , Mamíferos , Ratones Noqueados
2.
Nucleic Acids Res ; 48(7): 3806-3815, 2020 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-31996904

RESUMEN

Cap homeostasis is the cyclical process of decapping and recapping that maintains the translation and stability of a subset of the transcriptome. Previous work showed levels of some recapping targets decline following transient expression of an inactive form of RNMT (ΔN-RNMT), likely due to degradation of mRNAs with improperly methylated caps. The current study examined transcriptome-wide changes following inhibition of cytoplasmic cap methylation. This identified mRNAs with 5'-terminal oligopyrimidine (TOP) sequences as the largest single class of recapping targets. Cap end mapping of several TOP mRNAs identified recapping events at native 5' ends and downstream of the TOP sequence of EIF3K and EIF3D. This provides the first direct evidence for downstream recapping. Inhibition of cytoplasmic cap methylation was also associated with mRNA abundance increases for a number of transcription, splicing, and 3' processing factors. Previous work suggested a role for alternative polyadenylation in target selection, but this proved not to be the case. However, inhibition of cytoplasmic cap methylation resulted in a shift of upstream polyadenylation sites to annotated 3' ends. Together, these results solidify cap homeostasis as a fundamental process of gene expression control and show cytoplasmic recapping can impact regulatory elements present at the ends of mRNA molecules.


Asunto(s)
Secuencia de Oligopirimidina en la Región 5' Terminal del ARN , Caperuzas de ARN/metabolismo , ARN Mensajero/química , Secuencias Reguladoras de Ácido Ribonucleico , Línea Celular Tumoral , Citoplasma , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica , Humanos , Metilación , Poliadenilación , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
3.
Nucleic Acids Res ; 48(18): 10500-10517, 2020 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-32986830

RESUMEN

The Xist lncRNA requires Repeat A, a conserved RNA element located in its 5' end, to induce gene silencing during X-chromosome inactivation. Intriguingly, Repeat A is also required for production of Xist. While silencing by Repeat A requires the protein SPEN, how Repeat A promotes Xist production remains unclear. We report that in mouse embryonic stem cells, expression of a transgene comprising the first two kilobases of Xist (Xist-2kb) causes transcriptional readthrough of downstream polyadenylation sequences. Readthrough required Repeat A and the ∼750 nucleotides downstream, did not require SPEN, and was attenuated by splicing. Despite associating with SPEN and chromatin, Xist-2kb did not robustly silence transcription, whereas a 5.5-kb Xist transgene robustly silenced transcription and read through its polyadenylation sequence. Longer, spliced Xist transgenes also induced robust silencing yet terminated efficiently. Thus, in contexts examined here, Xist requires sequence elements beyond its first two kilobases to robustly silence transcription, and the 5' end of Xist harbors SPEN-independent transcriptional antiterminator activity that can repress proximal cleavage and polyadenylation. In endogenous contexts, this antiterminator activity may help produce full-length Xist RNA while rendering the Xist locus resistant to silencing by the same repressive complexes that the lncRNA recruits to other genes.


Asunto(s)
Proteínas de Unión al ADN/genética , ARN Largo no Codificante/genética , Proteínas de Unión al ARN/genética , Transcripción Genética , Inactivación del Cromosoma X/genética , Animales , Cromatina/genética , Regulación del Desarrollo de la Expresión Génica/genética , Silenciador del Gen , Ratones , Células Madre Embrionarias de Ratones/metabolismo , Poliadenilación/genética , Secuencias Repetitivas de Ácidos Nucleicos/genética , Cromosoma X/genética
4.
Nature ; 578(7795): 365-366, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32066915
5.
Nucleic Acids Res ; 47(13): 7049-7062, 2019 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-31114903

RESUMEN

Xist requires Repeat-A, a protein-binding module in its first two kilobases (2kb), to repress transcription. We report that when expressed as a standalone transcript in mouse embryonic stem cells (ESCs), the first 2kb of Xist (Xist-2kb) does not induce transcriptional silencing. Instead, Xist-2kb sequesters RNA produced from adjacent genes on chromatin. Sequestration does not spread beyond adjacent genes, requires the same sequence elements in Repeat-A that full-length Xist requires to repress transcription and can be induced by lncRNAs with similar sequence composition to Xist-2kb. We did not detect sequestration by full-length Xist, but we did detect it by mutant forms of Xist with attenuated transcriptional silencing capability. Xist-2kb associated with SPEN, a Repeat-A binding protein required for Xist-induced transcriptional silencing, but SPEN was not necessary for sequestration. Thus, when expressed in mouse ESCs, a 5' fragment of Xist that contains Repeat-A sequesters RNA from adjacent genes on chromatin and associates with the silencing factor SPEN, but it does not induce transcriptional silencing. Instead, Xist-induced transcriptional silencing requires synergy between Repeat-A and additional sequence elements in Xist. We propose that sequestration is mechanistically related to the Repeat-A dependent stabilization and tethering of Xist near actively transcribed regions of chromatin.


Asunto(s)
Cromatina/genética , Silenciador del Gen/fisiología , ARN Largo no Codificante/genética , ARN Mensajero/metabolismo , Secuencias Repetitivas de Ácidos Nucleicos/genética , Animales , Emparejamiento Base , Células Cultivadas , Proteínas de Unión al ADN/metabolismo , Células Madre Embrionarias , Femenino , Regulación de la Expresión Génica/genética , Genes , Masculino , Ratones , Ratones Transgénicos , Estabilidad del ARN , ARN Largo no Codificante/síntesis química , Proteínas de Unión al ARN/metabolismo , Transcripción Genética
6.
J Biol Chem ; 293(43): 16596-16607, 2018 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-30166341

RESUMEN

The N7-methylguanosine cap is added in the nucleus early in gene transcription and is a defining feature of eukaryotic mRNAs. Mammalian cells also possess cytoplasmic machinery for restoring the cap at uncapped or partially degraded RNA 5' ends. Central to both pathways is capping enzyme (CE) (RNA guanylyltransferase and 5'-phosphatase (RNGTT)), a bifunctional, nuclear and cytoplasmic enzyme. CE is recruited to the cytoplasmic capping complex by binding of a C-terminal proline-rich sequence to the third Src homology 3 (SH3) domain of NCK adapter protein 1 (NCK1). To gain broader insight into the cellular context of cytoplasmic recapping, here we identified the protein interactome of cytoplasmic CE in human U2OS cells through two complementary approaches: chemical cross-linking and recovery with cytoplasmic CE and protein screening with proximity-dependent biotin identification (BioID). This strategy unexpectedly identified 66 proteins, 52 of which are RNA-binding proteins. We found that CE interacts with several of these proteins independently of RNA, mediated by sequences within its N-terminal triphosphatase domain, and we present a model describing how CE-binding proteins may function in defining recapping targets. This analysis also revealed that CE is a client protein of heat shock protein 90 (HSP90). Nuclear and cytoplasmic CEs were exquisitely sensitive to inhibition of HSP90, with both forms declining significantly following treatment with each of several HSP90 inhibitors. Importantly, steady-state levels of capped mRNAs decreased in cells treated with the HSP90 inhibitor geldanamycin, raising the possibility that the cytotoxic effect of these drugs may partially be due to a general reduction in translatable mRNAs.


Asunto(s)
Citoplasma/enzimología , Proteínas HSP90 de Choque Térmico/metabolismo , Nucleotidiltransferasas/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Citoplasma/genética , Proteínas HSP90 de Choque Térmico/genética , Humanos , Nucleotidiltransferasas/genética , Proteínas Oncogénicas/genética , Proteínas Oncogénicas/metabolismo , Monoéster Fosfórico Hidrolasas/genética , Unión Proteica , Caperuzas de ARN/genética , Caperuzas de ARN/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética
7.
Nucleic Acids Res ; 45(18): 10726-10739, 2017 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-28981715

RESUMEN

Cap homeostasis is a cyclical process of decapping and recapping that impacts a portion of the mRNA transcriptome. The metastable uncapped forms of recapping targets redistribute from polysomes to non-translating mRNPs, and recapping is all that is needed for their return to the translating pool. Previous work identified a cytoplasmic capping metabolon consisting of capping enzyme (CE) and a 5'-monophosphate kinase bound to adjacent domains of Nck1. The current study identifies the canonical cap methyltransferase (RNMT) as the enzyme responsible for guanine-N7 methylation of recapped mRNAs. RNMT binds directly to CE, and its presence in the cytoplasmic capping complex was demonstrated by pulldown assays, gel filtration and proximity-dependent biotinylation. The latter also identified the RNMT cofactor RAM, whose presence is required for cytoplasmic cap methyltransferase activity. These findings guided development of an inhibitor of cytoplasmic cap methylation whose action resulted in a selective decrease in levels of recapped mRNAs.


Asunto(s)
Citoplasma/enzimología , Metiltransferasas/metabolismo , Caperuzas de ARN/metabolismo , Proteínas de Unión al ARN/metabolismo , Biocatálisis , Línea Celular Tumoral , Núcleo Celular/enzimología , Células HEK293 , Humanos , Metilación
9.
Cell Rep ; 42(7): 112803, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37436897

RESUMEN

During mouse embryogenesis, expression of the long non-coding RNA (lncRNA) Airn leads to gene repression and recruitment of Polycomb repressive complexes (PRCs) to varying extents over a 15-Mb domain. The mechanisms remain unclear. Using high-resolution approaches, we show in mouse trophoblast stem cells that Airn expression induces long-range changes to chromatin architecture that coincide with PRC-directed modifications and center around CpG island promoters that contact the Airn locus even in the absence of Airn expression. Intensity of contact between the Airn lncRNA and chromatin correlated with underlying intensity of PRC recruitment and PRC-directed modifications. Deletion of CpG islands that contact the Airn locus altered long-distance repression and PRC activity in a manner that correlated with changes in chromatin architecture. Our data imply that the extent to which Airn expression recruits PRCs to chromatin is controlled by DNA regulatory elements that modulate proximity of the Airn lncRNA product to its target DNA.


Asunto(s)
ARN Largo no Codificante , Animales , Ratones , Cromatina , Desarrollo Embrionario , Proteínas del Grupo Polycomb/genética , Proteínas del Grupo Polycomb/metabolismo , Regiones Promotoras Genéticas/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo
10.
bioRxiv ; 2023 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-37214824

RESUMEN

We report that when expressed at similar levels from an isogenic locus, the Airn lncRNA induces Polycomb deposition with a potency that rivals Xist . However, when subject to the same degree of promoter activation, Xist is more abundant and more potent than Airn . Our data definitively demonstrate that the Airn lncRNA is functional and suggest that Xist achieved extreme potency in part by evolving mechanisms to promote its own abundance.

11.
Wiley Interdiscip Rev RNA ; 12(6): e1657, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33861025

RESUMEN

The polycomb repressive complexes 1 and 2 (PRCs; PRC1 and PRC2) are conserved histone-modifying enzymes that often function cooperatively to repress gene expression. The PRCs are regulated by long noncoding RNAs (lncRNAs) in complex ways. On the one hand, specific lncRNAs cause the PRCs to engage with chromatin and repress gene expression over genomic regions that can span megabases. On the other hand, the PRCs bind RNA with seemingly little sequence specificity, and at least in the case of PRC2, direct RNA-binding has the effect of inhibiting the enzyme. Thus, some RNAs appear to promote PRC activity, while others may inhibit it. The reasons behind this apparent dichotomy are unclear. The most potent PRC-activating lncRNAs associate with chromatin and are predominantly unspliced or harbor unusually long exons. Emerging data imply that these lncRNAs promote PRC activity through internal RNA sequence elements that arise and disappear rapidly in evolutionary time. These sequence elements may function by interacting with common subsets of RNA-binding proteins that recruit or stabilize PRCs on chromatin. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Recognition RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.


Asunto(s)
ARN Largo no Codificante , Cromatina , Histonas , Complejo Represivo Polycomb 2/genética , Complejo Represivo Polycomb 2/metabolismo , ARN Largo no Codificante/genética , Proteínas de Unión al ARN
12.
Wiley Interdiscip Rev RNA ; 10(1): e1504, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30252202

RESUMEN

The N7-methylguanosine cap is a hallmark of the 5' end of eukaryotic mRNAs and is required for gene expression. Loss of the cap was believed to lead irreversibly to decay. However, nearly a decade ago, it was discovered that mammalian cells contain enzymes in the cytoplasm that are capable of restoring caps onto uncapped RNAs. In this review, we summarize recent advances in our understanding of cytoplasmic RNA recapping and discuss the biochemistry of this process and its impact on regulating and diversifying the transcriptome. Although most studies focus on mammalian RNA recapping, we also highlight new observations for recapping in disparate eukaryotic organisms, with the trypanosome recapping system appearing to be a fascinating example of convergent evolution. We conclude with emerging insights into the biological significance of RNA recapping and prospects for the future of this evolving area of study. This article is categorized under: RNA Processing > RNA Editing and Modification Translation > Translation Regulation RNA Processing > Capping and 5' End Modifications RNA Turnover and Surveillance > Regulation of RNA Stability.


Asunto(s)
Caperuzas de ARN , Animales , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Humanos
13.
Bio Protoc ; 8(6)2018 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-29644259

RESUMEN

Methyltransferases that methylate the guanine-N7 position of the mRNA 5' cap structure are ubiquitous among eukaryotes and commonly encoded by viruses. Here we provide a detailed protocol for the biochemical analysis of RNA cap methyltransferase activity of biological samples. This assay involves incubation of cap-methyltransferase-containing samples with a [32P]G-capped RNA substrate and S-adenosylmethionine (SAM) to produce RNAs with N7-methylated caps. The extent of cap methylation is then determined by P1 nuclease digestion, thin-layer chromatography (TLC), and phosphorimaging. The protocol described here includes additional steps for generating the [32P]G-capped RNA substrate and for preparing nuclear and cytoplasmic extracts from mammalian cells. This assay is also applicable to analyzing the cap methyltransferase activity of other biological samples, including recombinant protein preparations and fractions from analytical separations and immunoprecipitation/pulldown experiments.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA