Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Plant Microbe Interact ; 36(6): 334-344, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36749297

RESUMEN

Ralstonia solancearum causes bacterial wilt disease on diverse plant hosts. R. solanacearum cells enter a host from soil or infested water through the roots, then multiply and spread in the water-transporting xylem vessels. Despite the low nutrient content of xylem sap, R. solanacearum grows very well inside the host, using denitrification to respire in this hypoxic environment. R. solanacearum growth in planta also depends on the successful deployment of protein effectors into host cells via a type III secretion system (T3SS). The T3SS is absolutely required for R. solanacearum virulence, but it is metabolically costly and can trigger host defenses. Thus, the pathogen's success depends on optimized regulation of the T3SS. We found that a byproduct of denitrification, the toxic free-radical nitric oxide (NO), positively regulates the R. solanacearum T3SS both in vitro and in planta. Using chemical treatments and R. solanacearum mutants with altered NO levels, we show that the expression of a key T3SS regulator, hrpB, is induced by NO in culture. Analyzing the transcriptome of R. solanacearum responding to varying levels of NO both in culture and in planta revealed that the T3SS and effectors were broadly upregulated with increasing levels of NO. This regulation was specific to the T3SS and was not shared by other stressors. Our results suggest that R. solanacearum may experience an NO-rich environment in the plant host and that this NO contributes to the activation of the T3SS during infection. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.


Asunto(s)
Ralstonia solanacearum , Solanum lycopersicum , Sistemas de Secreción Tipo III/genética , Sistemas de Secreción Tipo III/metabolismo , Proteínas Bacterianas/metabolismo , Óxido Nítrico/metabolismo , Plantas/metabolismo , Enfermedades de las Plantas/microbiología
2.
Plant Cell Environ ; 46(10): 3040-3058, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-36213953

RESUMEN

Plant disease limits crop production, and host genetic resistance is a major means of control. Plant pathogenic Ralstonia causes bacterial wilt disease and is best controlled with resistant varieties. Tomato wilt resistance is multigenic, yet the mechanisms of resistance remain largely unknown. We combined metaRNAseq analysis and functional experiments to identify core Ralstonia-responsive genes and the corresponding biological mechanisms in wilt-resistant and wilt-susceptible tomatoes. While trade-offs between growth and defence are common in plants, wilt-resistant plants activated both defence responses and growth processes. Measurements of innate immunity and growth, including reactive oxygen species production and root system growth, respectively, validated that resistant plants executed defence-related processes at the same time they increased root growth. In contrast, in wilt-susceptible plants roots senesced and root surface area declined following Ralstonia inoculation. Wilt-resistant plants repressed genes predicted to negatively regulate water stress tolerance, while susceptible plants repressed genes predicted to promote water stress tolerance. Our results suggest that wilt-resistant plants can simultaneously promote growth and defence by investing in resources that act in both processes. Infected susceptible plants activate defences, but fail to grow and so succumb to Ralstonia, likely because they cannot tolerate the water stress induced by vascular wilt.


Asunto(s)
Enfermedades de las Plantas , Solanum lycopersicum , Deshidratación , Genes de Plantas , Enfermedades de las Plantas/microbiología , Solanum lycopersicum/genética , Solanum lycopersicum/microbiología
3.
Mol Plant Microbe Interact ; 34(10): 1212-1215, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34232701

RESUMEN

We share whole genome sequences of six strains from the Ralstonia solanacearum species complex, a diverse group of Betaproteobacteria that cause plant vascular wilt diseases. Using single-molecule real-time technology, we sequenced and assembled full genomes of Rs5 and UW700, two phylotype IA-sequevar 7 (IIA-7) strains from the southeastern United States that are closely related to the R. solanacearum species type strain, K60, but were isolated >50 years later. Four sequenced strains from Africa include a soil isolate from Nigeria (UW386, III-23), a tomato isolate from Senegal (UW763, I-14), and two potato isolates from the Madagascar highlands (RUN2474, III-19 and RUN2279, III-60). This resource will support studies of the genetic diversity, ecology, virulence, and microevolution of this globally distributed group of high-impact plant pathogens.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Asunto(s)
Ralstonia solanacearum , Solanum lycopersicum , Solanum tuberosum , Filogenia , Enfermedades de las Plantas , Ralstonia , Ralstonia solanacearum/genética
4.
mBio ; 14(1): e0318822, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36744950

RESUMEN

Bacterial pathogens in the Ralstonia solanacearum species complex (RSSC) infect the water-transporting xylem vessels of plants, causing bacterial wilt disease. Strains in RSSC phylotypes I and III can reduce nitrate to dinitrogen via complete denitrification. The four-step denitrification pathway enables bacteria to use inorganic nitrogen species as terminal electron acceptors, supporting their growth in oxygen-limited environments such as biofilms or plant xylem. Reduction of nitrate, nitrite, and nitric oxide all contribute to the virulence of a model phylotype I strain. However, little is known about the physiological role of the last denitrification step, the reduction of nitrous oxide to dinitrogen by NosZ. We found that phylotypes I and III need NosZ for full virulence. However, strains in phylotypes II and IV are highly virulent despite lacking NosZ. The ability to respire by reducing nitrate to nitrous oxide does not greatly enhance the growth of phylotype II and IV strains. These partial denitrifying strains reach high cell densities during plant infection and cause typical wilt disease. However, unlike phylotype I and III strains, partial denitrifiers cannot grow well under anaerobic conditions or form thick biofilms in culture or in tomato xylem vessels. Furthermore, aerotaxis assays show that strains from different phylotypes have different oxygen and nitrate preferences. Together, these results indicate that the RSSC contains two subgroups that occupy the same habitat but have evolved divergent energy metabolism strategies to exploit distinct metabolic niches in the xylem. IMPORTANCE Plant-pathogenic Ralstonia spp. are a heterogeneous globally distributed group of bacteria that colonize plant xylem vessels. Ralstonia cells multiply rapidly in plants and obstruct water transport, causing fatal wilting and serious economic losses of many key food security crops. The virulence of these pathogens depends on their ability to grow to high cell densities in the low-oxygen xylem environment. Plant-pathogenic Ralstonia can use denitrifying respiration to generate ATP. The last denitrification step, nitrous oxide reduction by NosZ, contributes to energy production and virulence for only one of the three phytopathogenic Ralstonia species. These complete denitrifiers form thicker biofilms in culture and in tomato xylem, suggesting they are better adapted to hypoxic niches. Strains with partial denitrification physiology form less biofilm and are more often planktonic. They are nonetheless highly virulent. Thus, these closely related bacteria have adapted their core metabolic functions to exploit distinct microniches in the same habitat.


Asunto(s)
Ralstonia solanacearum , Ralstonia , Nitratos/metabolismo , Óxido Nitroso/metabolismo , Xilema/microbiología , Agua/metabolismo , Enfermedades de las Plantas/microbiología
5.
Microbiol Spectr ; 10(2): e0026422, 2022 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-35377234

RESUMEN

Ralstonia solanacearum, which causes bacterial wilt disease of many crops, requires denitrifying respiration to survive in its plant host. In the hypoxic environment of plant xylem vessels, this pathogen confronts toxic oxidative radicals like nitric oxide (NO), which is generated by both bacterial denitrification and host defenses. R. solanacearum has multiple distinct mechanisms that could mitigate this stress, including putative NO-binding protein (NorA), nitric oxide reductase (NorB), and flavohaemoglobin (HmpX). During denitrification and tomato pathogenesis and in response to exogenous NO, R. solanacearum upregulated norA, norB, and hmpX. Single mutants lacking ΔnorB, ΔnorA, or ΔhmpX increased expression of many iron and sulfur metabolism genes, suggesting that the loss of even one NO detoxification system demands metabolic compensation. Single mutants suffered only moderate fitness reductions in host plants, possibly because they upregulated their remaining protective genes. However, ΔnorA/norB, ΔnorB/hmpX, and ΔnorA/hmpX double mutants grew poorly in denitrifying culture and in planta. It is likely that the loss of norA, norB, and hmpX is lethal, since the methods used to construct the double mutants could not generate a triple mutant. Functional aconitase activity assays showed that NorA, HmpX, and especially NorB are important for maintaining iron-sulfur cluster proteins. Additionally, plant defense genes were upregulated in tomatoes infected with the NO-overproducing ΔnorB mutant, suggesting that bacterial detoxification of NO reduces the ability of the plant host to perceive the presence of the pathogen. Thus, R. solanacearum's three NO detoxification systems each contribute to and are collectively essential for overcoming metabolic nitrosative stress during denitrification, for virulence and growth in the tomato, and for evading host plant defenses. IMPORTANCE The soilborne plant pathogen Ralstonia solanacearum (Rs) causes bacterial wilt, a serious and widespread threat to global food security. Rs is metabolically adapted to low-oxygen conditions, using denitrifying respiration to survive in the host and cause disease. However, bacterial denitrification and host defenses generate nitric oxide (NO), which is toxic and also alters signaling pathways in both the pathogen and its plant hosts. Rs mitigates NO with a trio of mechanistically distinct proteins: NO-reductase (NorB), predicted iron-binding (NorA), and oxidoreductase (HmpX). This redundancy, together with analysis of mutants and in-planta dual transcriptomes, indicates that maintaining low NO levels is integral to Rs fitness in tomatoes (because NO damages iron-cluster proteins) and to evading host recognition (because bacterially produced NO can trigger plant defenses).


Asunto(s)
Ralstonia solanacearum , Solanum lycopersicum , Desnitrificación , Hierro/metabolismo , Hierro/toxicidad , Solanum lycopersicum/metabolismo , Solanum lycopersicum/microbiología , Óxido Nítrico/metabolismo , Oxidorreductasas/metabolismo , Enfermedades de las Plantas/microbiología , Plantas/metabolismo , Ralstonia solanacearum/genética , Azufre/metabolismo
6.
mBio ; 6(2): e02471, 2015 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-25784703

RESUMEN

UNLABELLED: Genomic data predict that, in addition to oxygen, the bacterial plant pathogen Ralstonia solanacearum can use nitrate (NO3(-)), nitrite (NO2(-)), nitric oxide (NO), and nitrous oxide (N2O) as terminal electron acceptors (TEAs). Genes encoding inorganic nitrogen reduction were highly expressed during tomato bacterial wilt disease, when the pathogen grows in xylem vessels. Direct measurements found that tomato xylem fluid was low in oxygen, especially in plants infected by R. solanacearum. Xylem fluid contained ~25 mM NO3(-), corresponding to R. solanacearum's optimal NO3(-) concentration for anaerobic growth in vitro. We tested the hypothesis that R. solanacearum uses inorganic nitrogen species to respire and grow during pathogenesis by making deletion mutants that each lacked a step in nitrate respiration (ΔnarG), denitrification (ΔaniA, ΔnorB, and ΔnosZ), or NO detoxification (ΔhmpX). The ΔnarG, ΔaniA, and ΔnorB mutants grew poorly on NO3(-) compared to the wild type, and they had reduced adenylate energy charge levels under anaerobiosis. While NarG-dependent NO3(-) respiration directly enhanced growth, AniA-dependent NO2(-) reduction did not. NO2(-) and NO inhibited growth in culture, and their removal depended on denitrification and NO detoxification. Thus, NO3(-) acts as a TEA, but the resulting NO2(-) and NO likely do not. None of the mutants grew as well as the wild type in planta, and strains lacking AniA (NO2(-) reductase) or HmpX (NO detoxification) had reduced virulence on tomato. Thus, R. solanacearum exploits host NO3(-) to respire, grow, and cause disease. Degradation of NO2(-) and NO is also important for successful infection and depends on denitrification and NO detoxification systems. IMPORTANCE: The plant-pathogenic bacterium Ralstonia solanacearum causes bacterial wilt, one of the world's most destructive crop diseases. This pathogen's explosive growth in plant vascular xylem is poorly understood. We used biochemical and genetic approaches to show that R. solanacearum rapidly depletes oxygen in host xylem but can then respire using host nitrate as a terminal electron acceptor. The microbe uses its denitrification pathway to detoxify the reactive nitrogen species nitrite (a product of nitrate respiration) and nitric oxide (a plant defense signal). Detoxification may play synergistic roles in bacterial wilt virulence by converting the host's chemical weapon into an energy source. Mutant bacterial strains lacking elements of the denitrification pathway could not grow as well as the wild type in tomato plants, and some mutants were also reduced in virulence. Our results show how a pathogen's metabolic activity can alter the host environment in ways that increase pathogen success.


Asunto(s)
Adenosina Trifosfato/metabolismo , Nitrógeno/metabolismo , Ralstonia solanacearum/crecimiento & desarrollo , Ralstonia solanacearum/metabolismo , Xilema/microbiología , Anaerobiosis , Eliminación de Gen , Solanum lycopersicum/microbiología , Redes y Vías Metabólicas/genética , Enfermedades de las Plantas/microbiología , Ralstonia solanacearum/genética , Ralstonia solanacearum/patogenicidad , Virulencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA