Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 110(46): E4355-61, 2013 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-24167276

RESUMEN

Shift work or transmeridian travel can desynchronize the body's circadian rhythms from local light-dark cycles. The mammalian suprachiasmatic nucleus (SCN) generates and entrains daily rhythms in physiology and behavior. Paradoxically, we found that vasoactive intestinal polypeptide (VIP), a neuropeptide implicated in synchrony among SCN cells, can also desynchronize them. The degree and duration of desynchronization among SCN neurons depended on both the phase and the dose of VIP. A model of the SCN consisting of coupled stochastic cells predicted both the phase- and the dose-dependent response to VIP and that the transient phase desynchronization, or "phase tumbling", could arise from intrinsic, stochastic noise in small populations of key molecules (notably, Period mRNA near its daily minimum). The model also predicted that phase tumbling following brief VIP treatment would accelerate entrainment to shifted environmental cycles. We tested this using a prepulse of VIP during the day before a shift in either a light cycle in vivo or a temperature cycle in vitro. Although VIP during the day does not shift circadian rhythms, the VIP pretreatment approximately halved the time required for mice to reentrain to an 8-h shifted light schedule and for SCN cultures to reentrain to a 10-h shifted temperature cycle. We conclude that VIP below 100 nM synchronizes SCN cells and above 100 nM reduces synchrony in the SCN. We show that exploiting these mechanisms that transiently reduce cellular synchrony before a large shift in the schedule of daily environmental cues has the potential to reduce jet lag.


Asunto(s)
Relojes Biológicos/fisiología , Ritmo Circadiano/fisiología , Modelos Biológicos , Transducción de Señal/fisiología , Núcleo Supraquiasmático/fisiología , Péptido Intestinal Vasoactivo/metabolismo , Animales , Relojes Biológicos/efectos de los fármacos , Ritmo Circadiano/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Mediciones Luminiscentes , Masculino , Ratones , Actividad Motora/fisiología , Proteínas Circadianas Period/metabolismo , Fotoperiodo , Temperatura , Péptido Intestinal Vasoactivo/farmacología
2.
Trends Neurosci ; 38(10): 621-636, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26442696

RESUMEN

Studies of Alzheimer's disease (AD) have predominantly focused on two major pathologies: amyloid-ß (Aß) and hyperphosphorylated tau. These misfolded proteins can accumulate asymptomatically in distinct regions over decades. However, significant Aß accumulation can be seen in individuals who do not develop dementia, and tau pathology limited to the transentorhinal cortex, which can appear early in adulthood, is usually clinically silent. Thus, an interaction between these pathologies appears to be necessary to initiate and propel disease forward to widespread circuits. Recent multidisciplinary findings strongly suggest that the third factor required for disease progression is an aberrant microglial immune response. This response may initially be beneficial; however, a maladaptive microglial response eventually develops, fueling a feed-forward spread of tau and Aß pathology.


Asunto(s)
Enfermedad de Alzheimer/inmunología , Microglía/inmunología , Animales , Encéfalo/inmunología , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA