Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Opt Express ; 31(2): 2013-2028, 2023 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-36785224

RESUMEN

We propose the generation of random-modulated pulses using a gain-switched semiconductor laser with a delayed self-homodyne interferometer (DSHI) for lidar applications. By emitting non-repetitive random-modulated pulses, ambiguity in ranging and interference in detection can be mitigated. When gain-switched, the wavelength of the laser fluctuates abruptly at the beginning of the pulse and then drops until it stabilizes toward its continuous-wave (CW) state. By beating the two pulses with instantaneous frequency detuning from the DSHI, pulses consisting of random and down-chirped modulations can be generated without any complex code generation and modulation. In this study, we investigate the waveforms and spectra of the random-modulated pulses generated under various homodyne delay lengths, switching currents, and pulsewidths. We characterize their signal-to-noise ratio (SNR), precision, and cross-correlation between consecutive pulses to evaluate their performance in lidar applications. For a good SNR of over 12 dB, the generated pulses have an optimal precision of approximately 1 mm in ranging, which is substantially better than the chaos-modulated pulses generated based on laser feedback dynamics. By establishing a random-modulated pulse lidar based on the proposed gain-switched homodyne scheme, we successfully demonstrate 3D imaging and profiling with good precision.

2.
Opt Express ; 29(17): 27871-27881, 2021 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-34615193

RESUMEN

We investigated the characteristics of chaos-modulated pulses amplified by a pulsed master oscillator power amplifier (MOPA) for application in a new chaos lidar system in this study. Compared with the loss modulation applied in a continuous-wave (CW) time-gating scheme, the pulsed MOPA scheme could generate chaos-modulated pulses with much higher peak power, resulting in an improved peak-to-standard deviation of sidelobe level (PSLstd) in correlation-based lidar detection. When the pulsed MOPA scheme was applied at a duty cycle of 0.1% and pulse repetition frequency of 20 kHz, which correspond to specifications compliant with eye safety regulations, it outperformed the CW time-gating scheme with respect to PSLstd by 15 dB. For the first time, we applied the chaos lidar system with the pulsed MOPA scheme to execute high-resolution, high-precision three-dimensional (3D) face profiling from a distance of 5 m. We also added the corresponding PSLstd value to each pixel in the point clouds to generate false-color images; thus, we obtained 3D images of a scene with multiple objects at a range of up to 20 m.

3.
Opt Express ; 28(16): 24037-24046, 2020 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-32752389

RESUMEN

We generate and analyze chaos-modulated pulses based on a gain-switched semiconductor laser subject to delay-synchronized optical feedback for pulsed chaos lidar applications. Benefited by the aperiodic and uncorrelated chaos waveforms, chaos lidar possesses the advantages of no range ambiguity and immunity to interference and jamming. To improve the detection range while in compliance with the eye-safe regulation, generating chaos-modulated pulses with higher peak power rather than chaos in its CW form is desired. While using an acousto-optic modulator to time-gate the CW chaos into pulses could be lossy and energy inefficient, in this paper, we study the generation of chaos-modulated pulses using a gain-switched laser subject to delay-synchronized optical feedback. Under different feedback strengths and modulation currents of gain-switching, we investigate the quality of the chaos-modulated pulses generated by analyzing their ratio of chaos oscillations, peak sidelobe levels (PSLs), and cross-correlation peaks under different mismatching conditions between the pulse repetition interval (PRI) and the feedback time delay τ. With proper feedback strengths and modulation currents, we find that synchronizing the gain-switching modulation with the delayed feedback (PRI = τ) is essential in generating the chaos-modulated pulses suitable for the pulsed chaos lidar applications. When mismatching occurs, we identify sequences of dynamical periods including stable, periodic, and chaos oscillations evolved within a pulse.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA