Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
J Immunol ; 211(10): 1589-1604, 2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37756529

RESUMEN

GM-CSF has been employed as an adjuvant to cancer immunotherapy with mixed results based on dosage. We previously showed that GM-CSF regulated tumor angiogenesis by stimulating soluble vascular endothelial growth factor (VEGF) receptor-1 from monocytes/macrophages in a dose-dependent manner that neutralized free VEGF, and intratumoral injections of high-dose GM-CSF ablated blood vessels and worsened hypoxia in orthotopic polyoma middle T Ag (PyMT) triple-negative breast cancer (TNBC). In this study, we assessed both immunoregulatory and oxygen-regulatory components of low-dose versus high-dose GM-CSF to compare effects on tumor oxygen, vasculature, and antitumor immunity. We performed intratumoral injections of low-dose GM-CSF or saline controls for 3 wk in FVB/N PyMT TNBC. Low-dose GM-CSF uniquely reduced tumor hypoxia and normalized tumor vasculature by increasing NG2+ pericyte coverage on CD31+ endothelial cells. Priming of "cold," anti-PD1-resistant PyMT tumors with low-dose GM-CSF (hypoxia reduced) sensitized tumors to anti-PD1, whereas high-dose GM-CSF (hypoxia exacerbated) did not. Low-dose GM-CSF reduced hypoxic and inflammatory tumor-associated macrophage (TAM) transcriptional profiles; however, no phenotypic modulation of TAMs or tumor-infiltrating lymphocytes were observed by flow cytometry. In contrast, high-dose GM-CSF priming increased infiltration of TAMs lacking the MHC class IIhi phenotype or immunostimulatory marker expression, indicating an immunosuppressive phenotype under hypoxia. However, in anti-PD1 (programmed cell death 1)-susceptible BALB/c 4T1 tumors (considered hot versus PyMT), high-dose GM-CSF increased MHC class IIhi TAMs and immunostimulatory molecules, suggesting disparate effects of high-dose GM-CSF across PyMT versus 4T1 TNBC models. Our data demonstrate a (to our knowledge) novel role for low-dose GM-CSF in reducing tumor hypoxia for synergy with anti-PD1 and highlight why dosage and setting of GM-CSF in cancer immunotherapy regimens require careful consideration.


Asunto(s)
Neoplasias Mamarias Animales , Neoplasias de la Mama Triple Negativas , Animales , Humanos , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Macrófagos , Factor A de Crecimiento Endotelial Vascular/metabolismo , Células Endoteliales/metabolismo , Hipoxia/patología , Oxígeno/metabolismo
2.
J Org Chem ; 85(16): 10388-10398, 2020 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-32698583

RESUMEN

Stable tetrathiatriarylmethyl radicals have significantly contributed to the recent progress in biomedical electron paramagnetic resonance (EPR) due to their unmatched stability in biological media and long relaxation times. However, the lipophilic core of the most commonly used structure (Finland trityl) is responsible for its interaction with plasma biomacromolecules, such as albumin, and self-aggregation at high concentrations and/or low pH. While Finland trityl is generally considered inert toward many reactive radical species, we report that sulfite anion radical efficiently substitutes the three carboxyl moieties of Finland trityl with a high rate constant of 3.53 × 108 M-1 s-1, leading to a trisulfonated Finland trityl radical. This newly synthesized highly hydrophilic trityl radical shows an ultranarrow linewidth (ΔBpp = 24 mG), a lower affinity for albumin than Finland trityl, and a high aqueous solubility even at acidic pH. Therefore, this new tetrathiatriarylmethyl radical can be considered as a superior spin probe in comparison to the widely used Finland trityl. One of its potential applications was demonstrated by in vivo mapping oxygen in a mouse model of breast cancer. Moreover, we showed that one of the three sulfo groups can be easily substituted with S-, N-, and P-nucleophiles, opening access to various monofunctionalized sulfonated trityl radicals.


Asunto(s)
Oxígeno , Compuestos de Tritilo , Animales , Espectroscopía de Resonancia por Spin del Electrón , Radicales Libres , Interacciones Hidrofóbicas e Hidrofílicas , Ratones
3.
Appl Magn Reson ; 51(9-10): 1117-1124, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33642700

RESUMEN

Functional four-dimensional spectral-spatial electron paramagnetic imaging (EPRI) is routinely used in biomedical research. Positions and widths of EPR lines in the spectral dimension report oxygen partial pressure, pH, and other important parameters of the tissue microenvironment. Images are measured in the homogeneous external magnetic field. An application of EPRI is proposed in which the field is perturbed by a magnetized object. A proof-of-concept imaging experiment was conducted, which permitted visualization of the magnetic field created by this object. A single-line lithium octa-n-butoxynaphthalocyanine spin probe was used in the experiment. The spectral position of the EPR line directly measured the strength of the perturbation field with spatial resolution. A three-dimensional magnetic field map was reconstructed as a result. Several applications of this technology can be anticipated. First is EPRI/MPI co-registration, where MPI is an emerging magnetic particle imaging technique. Second, EPRI can be an alternative to magnetic field cameras that are used for the development of high-end permanent magnets and their assemblies, consumer electronics, and industrial sensors. Besides the high resolution of magnetic field readings, EPR probes can be placed in the internal areas of various assemblies that are not accessible by the standard sensors. Third, EPRI can be used to develop systems for magnetic manipulation of cell cultures.

4.
Bioorg Med Chem Lett ; 29(14): 1756-1760, 2019 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-31129052

RESUMEN

Tetrathiatriarylmethyl (TAM) radicals represent soluble paramagnetic probes for biomedical electron paramagnetic resonance (EPR)-based spectroscopy and imaging. There is an increasing demand in the development of multifunctional, biocompatible and targeted trityl probes hampered by the difficulties in derivatization of the TAM structure. We proposed a new straightforward synthetic strategy using click chemistry for the covalent conjugation of the TAM radical with a water-soluble biocompatible carrier exemplified here by dextran. A set of dextran-grafted probes varied in the degrees of Finland trityl radical loading and dextran modification by polyethelene glycol has been synthesized. The EPR spectrum of the optimized macromolecular probe exhibits a single narrow line with high sensitivity to oxygen and has advantages over the unbound Finland trityl of being insensitive to interactions with albumin. In vivo EPR imaging of tissue oxygenation performed in breast tumor-bearing mouse using dextran-grafted probe demonstrates its utility for preclinical oximetric applications.


Asunto(s)
Dextranos/uso terapéutico , Espectroscopía de Resonancia por Spin del Electrón/métodos , Compuestos de Tritilo/uso terapéutico , Dextranos/farmacología , Estructura Molecular , Compuestos de Tritilo/farmacología
5.
Angew Chem Int Ed Engl ; 57(36): 11701-11705, 2018 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-30003653

RESUMEN

Enzyme activities are well established biomarkers of many pathologies. Imaging enzyme activity directly in vivo may help to gain insight into the pathogenesis of various diseases but remains extremely challenging. In this communication, we report the use of EPR imaging (EPRI) in combination with a specially designed paramagnetic enzymatic substrate to map alkaline phosphatase activity with a high selectivity, thereby demonstrating the potential of EPRI to map enzyme activity.


Asunto(s)
Fosfatasa Alcalina/análisis , Espectroscopía de Resonancia por Spin del Electrón/métodos , Fosfatasa Alcalina/metabolismo , Línea Celular Tumoral , Pruebas de Enzimas/métodos , Humanos , Neoplasias/enzimología , Neoplasias/metabolismo , Fosforilación , Especificidad por Sustrato
6.
Anal Chem ; 89(9): 4758-4771, 2017 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-28363027

RESUMEN

This Feature overviews the basic principles of using stable organic radicals involved in reversible exchange processes as functional paramagnetic probes. We demonstrate that these probes in combination with electron paramagnetic resonance (EPR)-based spectroscopy and imaging techniques provide analytical tools for quantitative mapping of critical parameters of local chemical microenvironment. The Feature is written to be understandable to people who are laymen to the EPR field in anticipation of future progress and broad application of these tools in biological systems, especially in vivo, over the next years.


Asunto(s)
Microambiente Celular/fisiología , Radicales Libres/química , Óxidos de Nitrógeno/química , Compuestos de Tritilo/química , Animales , Espectroscopía de Resonancia por Spin del Electrón/métodos
7.
Z Phys Chem (N F) ; 231(3): 689-703, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28751814

RESUMEN

In conventional pulsed magnetic resonance suppression of unwanted signals is achieved by changing pulse phases with respect to the reference signal and spin magnetization phase. This method is called phase cycling. An alternative approach is suggested to separate the unwanted signals from the spin echo by using magnetic field modulation. Precession frequency of the spins, and therefore phases of free indication decays and echo signals, can be controlled by the selection of modulation parameters. This enables phase cycling. Since the signal is detected in the presence of the changing magnetic field, which drives spin precession, the echo signal is frequency-modulated. Numerical transformation into an accelerating reference frame associated with the Larmor frequency restores the signal to a form that would have been observed in the absence of modulation. The suggested phase cycling method is analyzed in detail for the two pulse spin echo case.

8.
9.
Mol Imaging Biol ; 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38038860

RESUMEN

PURPOSE: Bioprinting is an additive manufacturing technology analogous to 3D printing. Instead of plastic or resin, cell-laden hydrogels are used to produce a construct of the intended biological structure. Over time, cells transform this construct into a functioning tissue or organ. The process of printing followed by tissue maturation is referred to as 4D bioprinting. The fourth dimension is temporal. Failure to provide living cells with sufficient amounts of oxygen at any point along the developmental timeline may jeopardize the bioprinting goals. Even transient hypoxia may alter cells' differentiation and proliferation or trigger apoptosis. Electron paramagnetic resonance (EPR) imaging modality is proposed to permit 4D monitoring of oxygen within bioprinted structures. PROCEDURES: Lithium octa-n-butoxy-phthalocyanine (LiNc-BuO) probes have been introduced into gelatin methacrylate (GelMA) bioink. GelMA is a cross-linkable hydrogel, and LiNc-BuO is an oxygen-sensitive compound that permits longitudinal oximetric measurements. The effects of the oxygen probe on printability have been evaluated. A digital light processing (DLP) bioprinter was built in the laboratory. Bioprinting protocols have been developed that consider the optical properties of the GelMA/LiNc-BuO composites. Acellular and cell-laden constructs have been printed and imaged. The post-printing effect of residual photoinitiator on oxygen depletion has been investigated. RESULTS: Models have been successfully printed using a lab-built bioprinter. Rapid scan EPR images reflective of the expected oxygen concentration levels have been acquired. An unreported problem of oxygen depletion in bioprinted constructs by the residual photoinitiator has been documented. EPR imaging is proposed as a control method for its removal. The oxygen consumption rates by HEK293T cells within a bioprinted cylinder have been imaged and quantified. CONCLUSIONS: The feasibility of the cointegration of 4D EPR imaging and 4D bioprinting has been demonstrated. The proof-of-concept experiments, which were conducted using oxygen probes loaded into GelMA, lay the foundation for a broad range of applications, such as bioprinting with many types of bioinks loaded with diverse varieties of molecular spin probes.

10.
J Magn Reson ; 345: 107308, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36356489

RESUMEN

Automation has become an essential component of modern scientific instruments which often capture large amounts of complex dynamic data. Algorithms are developed to read multiple sensors in parallel with data acquisition and to adjust instrumental parameters on the fly. Decisions are made on a time scale unattainable to the human operator. In addition to speed, automation reduces human error, improves the reproducibility of experiments, and improves the reliability of acquired data. An automatic digital control (ADiC) was developed to reliably sustain critical coupling of a resonator over a wide range of time-varying loading conditions. The ADiC uses the computational power of a microcontroller that directly communicates with all system components independent of a personal computer (PC). The PC initiates resonator tuning and coupling by sending a command to MC via serial port. After receiving the command, ADiC establishes critical coupling conditions within approximately 5 ms. A printed circuit board resonator was designed to permit digital control. The performance of the resonator together with the ADiC was evaluated by varying the resonator loading from empty to heavily loaded. For the loading, samples containing aqueous sodium chloride that strongly absorb electromagnetic waves were used. A previously reported rapid scan (RS) electron paramagnetic resonance (EPR) imaging instrument was upgraded by the incorporation of ADiC. RS spectra and an in vivo image of oxygen in a mouse tumor model have been acquired using the upgraded system. ADiC robustly sustained critical coupling of the resonator to the transmission line during these measurements. The design implemented in this study can be used in slow-scan and pulsed EPR with modifications.


Asunto(s)
Espectroscopía de Resonancia por Spin del Electrón , Humanos , Animales , Ratones , Reproducibilidad de los Resultados
11.
3D Print Addit Manuf ; 8(6): 358-365, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34977276

RESUMEN

Oxygen plays a critical role in the photopolymerization process resulting in the formation of solid structures from liquid resins during three-dimensional (3D) printing: it acts as a polymerization inhibitor. Upon exposure to light, oxygen is depleted. As a result, the polymerization process becomes activated. Electron paramagnetic resonance (EPR) imaging is described as a tool to visualize changes in oxygen distribution caused by light exposure. This nondestructive method uses radio waves and, therefore, is not constrained by optical opacity offering greater penetrating depth. Three proof-of-principle imaging experiments were demonstrated: (1) spatial propagation of the photopolymerization process; (2) oxygen depletion as a result of postcuring; and (3) oxygen visualization in a 3D printed spiral model. Commercial stereolithography (SLA) resin was used in these experiments. Lithium octa-n-butoxynaphthalocyanine (LiNc-BuO) probe was mixed with the resin to permit oxygen imaging. Li-naphthalocyanine probes are routinely used in various EPR applications because of their long-term stability and high functional sensitivity to oxygen. In this study, we demonstrate that EPR imaging has the potential to become a powerful visualization tool in the development of 3D printing technology, including bioprinting and tissue engineering.

12.
Artículo en Inglés | MEDLINE | ID: mdl-21546999

RESUMEN

An electronic circuit was designed and constructed that can switch an r.f. signal between two amplitude levels at very fast speed (less than 10 ns). The circuit incorporates a TTL control for convenient interfacing to existing equipment. The attenuation of the more attenuated state can be adjusted to be up to 12 dB more than for the less attenuated state. The initial application was in Pulsed Electron Paramagnetic Resonance (EPR) spectroscopy to produce a π/2 - π pulse sequence with pulses of equal time duration and 6 dB difference in amplitude. A new method for measuring electron spin echoes for narrow, homogeneously-broadened lines is described.

13.
J Magn Reson ; 318: 106801, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32862080

RESUMEN

A general solution for the RS EPR deconvolution problem has been derived. This solution permits the use of arbitrary magnetic field scans. As a result, constraints on the current experimental designs can be lifted. For example, a trapezoidal waveform can be used to accelerate the scan rate without affecting the signal bandwidth. The assumptions made to develop the previous algorithms are mathematically validated.


Asunto(s)
Espectroscopía de Resonancia por Spin del Electrón/métodos , Algoritmos , Campos Electromagnéticos , Modelos Lineales , Reproducibilidad de los Resultados , Procesamiento de Señales Asistido por Computador , Análisis de Ondículas
14.
J Magn Reson ; 304: 42-52, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31100585

RESUMEN

The development of a digital console for in-vivo rapid scan electron paramagnetic resonance (RS-EPR) spectroscopy and imaging is described in detail. The console was build using field programmable gate array (FGPA) technology that permits real-time control of the resonator and scanning magnetic fields during the measurements. Automatic resonator tuning and matching are achieved by implementing a digital feedback control system and using voltage-tunable capacitors. A band-pass subsampling method is used to directly digitize EPR signals at the carrier frequencies of about 1.2 GHz. The magnetic field scan waveforms, excitation EPR frequency, and sampling clock are all internally synchronized. Full-cycle RS-EPR signals are accumulated in the FPGA in real time without any time gaps. The result is the elimination of the re-arm time, during which data are not acquired. The proposed design in this manuscript has a small footprint and is relatively low cost. The FPGA-based RS-EPR system was tested using standard LiNc-BuO and tempone-d16 samples. The RS-EPR linewidth of the LiNc-BuO sample was consistent with an independent pulsed EPR measurement.


Asunto(s)
Espectroscopía de Resonancia por Spin del Electrón/instrumentación , Algoritmos , Diseño de Equipo , Procesamiento de Señales Asistido por Computador
15.
J Magn Reson ; 305: 94-103, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31238278

RESUMEN

An electron paramagnetic resonance (EPR) imaging system has been custom built for use in pre-clinical and, potentially, clinical studies. Commercial standalone modules have been used in the design that are MATLAB-controlled. The imaging system combines digital and analog technologies. It was designed to achieve maximum flexibility and versatility and to perform standard and novel user-defined experiments. This design goal is achieved by frequency mixing of an arbitrary waveform generator (AWG) output at the intermediate frequency (IF) with a constant source frequency (SF). Low noise SF at 250, 750, and 1000 MHz are available in the system. A wide range of frequencies from near-baseband to L-band can be generated as a result. Two-stage downconversion at the signal detection side is implemented that enables multi-frequency EPR capability. In the first stage, the signal frequency is converted to IF. A novel AWG-enabled digital auto-frequency control method that operates at IF is described that is used for automatic resonator tuning. Quadrature baseband EPR signal is generated in the second downconversion step. The semi-digital approach of mixing low-noise frequency sources with an AWG permits generation of arbitrary excitation patterns that include but are not limited to frequency sweeps for resonator tuning and matching, continuous-wave, and pulse sequences. Presented in this paper is the demonstration of rapid scan (RS) EPR imaging implemented at 800 MHz. Generation of stable magnetic scan waveforms is critical for the RS method. A digital automatic scan control (DASC) system was developed for sinusoidal magnetic field scans. DASC permits tight control of both amplitude and phase of the scans. A surface loop resonator was developed using 3D printing technology. RS EPR imaging system was validated using sample phantoms. In vivo imaging of a breast cancer mouse model is demonstrated.


Asunto(s)
Espectroscopía de Resonancia por Spin del Electrón/instrumentación , Neoplasias Mamarias Experimentales/diagnóstico por imagen , Algoritmos , Animales , Diseño de Equipo , Procesamiento de Imagen Asistido por Computador , Ratones , Fantasmas de Imagen , Procesamiento de Señales Asistido por Computador
16.
Phys Med Biol ; 63(10): 105010, 2018 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-29676283

RESUMEN

The advent of hybrid scanners, combining complementary modalities, has revolutionized the application of advanced imaging technology to clinical practice and biomedical research. In this project, we investigated the melding of two complementary, functional imaging methods: positron emission tomography (PET) and electron paramagnetic resonance imaging (EPRI). PET radiotracers can provide important information about cellular parameters, such as glucose metabolism. While EPR probes can provide assessment of tissue microenvironment, measuring oxygenation and pH, for example. Therefore, a combined PET/EPRI scanner promises to provide new insights not attainable with current imagers by simultaneous acquisition of multiple components of tissue microenvironments. To explore the simultaneous acquisition of PET and EPR images, a prototype system was created by combining two existing scanners. Specifically, a silicon photomultiplier (SiPM)-based PET scanner ring designed as a portable scanner was combined with an EPRI scanner designed for the imaging of small animals. The ability of the system to obtain simultaneous images was assessed with a small phantom consisting of four cylinders containing both a PET tracer and EPR spin probe. The resulting images demonstrated the ability to obtain contemporaneous PET and EPR images without cross-modality interference. Given the promising results from this initial investigation, the next step in this project is the construction of the next generation pre-clinical PET/EPRI scanner for multi-parametric assessment of physiologically-important parameters of tissue microenvironments.


Asunto(s)
Espectroscopía de Resonancia por Spin del Electrón/métodos , Espectroscopía de Resonancia por Spin del Electrón/veterinaria , Imagen Multimodal/veterinaria , Fantasmas de Imagen , Tomografía de Emisión de Positrones/métodos , Tomografía de Emisión de Positrones/veterinaria , Animales , Espectroscopía de Resonancia por Spin del Electrón/instrumentación , Diseño de Equipo , Tomografía de Emisión de Positrones/instrumentación
17.
J Magn Reson ; 281: 272-278, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28666168

RESUMEN

Rapid scan electron paramagnetic resonance (RS EPR) is a continuous-wave (CW) method that combines narrowband excitation and broadband detection. Sinusoidal magnetic field scans that span the entire EPR spectrum cause electron spin excitations twice during the scan period. Periodic transient RS signals are digitized and time-averaged. Deconvolution of absorption spectrum from the measured full-cycle signal is an ill-posed problem that does not have a stable solution because the magnetic field passes the same EPR line twice per sinusoidal scan during up- and down-field passages. As a result, RS signals consist of two contributions that need to be separated and postprocessed individually. Deconvolution of either of the contributions is a well-posed problem that has a stable solution. The current version of the RS EPR algorithm solves the separation problem by cutting the full-scan signal into two half-period pieces. This imposes a constraint on the experiment; the EPR signal must completely decay by the end of each half-scan in order to not be truncated. The constraint limits the maximum scan frequency and, therefore, the RS signal-to-noise gain. Faster scans permit the use of higher excitation powers without saturating the spin system, translating into a higher EPR sensitivity. A stable, full-scan algorithm is described in this paper that does not require truncation of the periodic response. This algorithm utilizes the additive property of linear systems: the response to a sum of two inputs is equal the sum of responses to each of the inputs separately. Based on this property, the mathematical model for CW RS EPR can be replaced by that of a sum of two independent full-cycle pulsed field-modulated experiments. In each of these experiments, the excitation power equals to zero during either up- or down-field scan. The full-cycle algorithm permits approaching the upper theoretical scan frequency limit; the transient spin system response must decay within the scan period. Separation of the interfering up- and down-field scan responses remains a challenge for reaching the full potential of this new method. For this reason, only a factor of two increase in the scan rate was achieved, in comparison with the standard half-scan RS EPR algorithm. It is important for practical use that faster scans not necessarily increase the signal bandwidth because acceleration of the Larmor frequency driven by the changing magnetic field changes its sign after passing the inflection points on the scan. The half-scan and full-scan algorithms are compared using a LiNC-BuO spin probe of known line-shape, demonstrating that the new method produces stable solutions when RS signals do not completely decay by the end of each half-scan.


Asunto(s)
Algoritmos , Espectroscopía de Resonancia por Spin del Electrón/estadística & datos numéricos , Campos Electromagnéticos , Análisis de Fourier , Modelos Lineales , Compuestos de Litio/química , Procesamiento de Señales Asistido por Computador
18.
J Magn Reson ; 276: 31-36, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28092786

RESUMEN

Thiol redox status is an important physiologic parameter that affects the success or failure of cancer treatment. Rapid scan electron paramagnetic resonance (RS EPR) is a novel technique that has shown higher signal-to-noise ratio than conventional continuous-wave EPR in in vitro studies. Here we used RS EPR to acquire rapid three-dimensional images of the thiol redox status of tumors in living mice. This work presents, for the first time, in vivo RS EPR images of the kinetics of the reaction of 2H,15N-substituted disulfide-linked dinitroxide (PxSSPx) spin probe with intracellular glutathione. The cleavage rate is proportional to the intracellular glutathione concentration. Feasibility was demonstrated in a FSa fibrosarcoma tumor model in C3H mice. Similar to other in vivo and cell model studies, decreasing intracellular glutathione concentration by treating mice with l-buthionine sulfoximine (BSO) markedly altered the kinetic images.


Asunto(s)
Neoplasias Encefálicas/diagnóstico por imagen , Diagnóstico por Imagen/métodos , Espectroscopía de Resonancia por Spin del Electrón/métodos , Fibrosarcoma/diagnóstico por imagen , Neoplasias Experimentales/diagnóstico por imagen , Animales , Butionina Sulfoximina/química , Disulfuros/química , Femenino , Glutatión/metabolismo , Imagenología Tridimensional , Cinética , Ratones , Ratones Endogámicos C3H , Neoplasias Experimentales/metabolismo , Óxidos de Nitrógeno/química , Oxidación-Reducción , Relación Señal-Ruido , Marcadores de Spin/síntesis química
19.
J Magn Reson ; 272: 91-99, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27673275

RESUMEN

In pulsed magnetic resonance, the excitation power is many orders of magnitude larger than that induced by the spin system in the receiving coil or resonator. The receiver must be protected during and immediately after the excitation pulse to allow for the energy stored in the resonator to dissipate to a safe level. The time during which the signal is not detected, the instrumental dead-time, can be shortened by using magnetically decoupled excitation and receive coils. Such coils are oriented, with respect to each other, in a way that minimizes the total magnetic flux produced by one coil in the other. We suggest that magnetically decoupled coils can be isolated to a larger degree by tuning them to separate frequencies. Spins are excited at one frequency, and the echo signal is detected at another. Sinusoidal magnetic field modulation that rapidly changes the Larmor frequency of the spins between the excitation and detection events is used to ensure the resonance conditions for both coils. In this study, the relaxation times of trityl-CD3 were measured in a field-modulated pulsed EPR experiment and compared to results obtained using a standard spin echo method. The excitation and receive coils were tuned to 245 and 256.7MHz, respectively. Using an available rapid-scan, cross-loop EPR resonator, we demonstrated an isolation improvement of approximately 20-30dB due to frequency decoupling. Theoretical analysis, numerical simulations, and proof-of-concept experiments demonstrated that substantial excitation-detection decoupling can be achieved. A pulsed L-band system, including a small volume bi-modal resonator equipped with modulation coils, was constructed to demonstrate fivefold dead-time reduction in comparison with the standard EPR experiment. This was achieved by detuning of the excitation and receive coils by 26MHz and using sinusoidal modulation at 480kHz.


Asunto(s)
Campos Magnéticos , Espectroscopía de Resonancia Magnética
20.
J Vis Exp ; (115)2016 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-27768025

RESUMEN

We demonstrate a superior method of 2D spectral-spatial imaging of stable radical reporter molecules at 250 MHz using rapid-scan electron-paramagnetic-resonance (RS-EPR), which can provide quantitative information under in vivo conditions on oxygen concentration, pH, redox status and concentration of signaling molecules (i.e., OH•, NO•). The RS-EPR technique has a higher sensitivity, improved spatial resolution (1 mm), and shorter acquisition time in comparison to the standard continuous wave (CW) technique. A variety of phantom configurations have been tested, with spatial resolution varying from 1 to 6 mm, and spectral width of the reporter molecules ranging from 16 µT (160 mG) to 5 mT (50 G). A cross-loop bimodal resonator decouples excitation and detection, reducing the noise, while the rapid scan effect allows more power to be input to the spin system before saturation, increasing the EPR signal. This leads to a substantially higher signal-to-noise ratio than in conventional CW EPR experiments.


Asunto(s)
Espectroscopía de Resonancia por Spin del Electrón , Transducción de Señal , Concentración de Iones de Hidrógeno , Oxidación-Reducción , Oxígeno , Fantasmas de Imagen , Cintigrafía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA