RESUMEN
BACKGROUND: Coronary artery disease is an incurable, life-threatening disease that was once considered primarily a disorder of lipid deposition. Coronary artery disease is now also characterized by chronic inflammation' notable for the buildup of atherosclerotic plaques containing immune cells in various states of activation and differentiation. Understanding how these immune cells contribute to disease progression may lead to the development of novel therapeutic strategies. METHODS: We used single-cell technology and in vitro assays to interrogate the immune microenvironment of human coronary atherosclerotic plaque at different stages of maturity. RESULTS: In addition to macrophages, we found a high proportion of αß T cells in the coronary plaques. Most of these T cells lack high expression of CCR7 and L-selectin, indicating that they are primarily antigen-experienced memory cells. Notably, nearly one-third of these cells express the HLA-DRA surface marker, signifying activation through their TCRs (T-cell receptors). Consistent with this, TCR repertoire analysis confirmed the presence of activated αß T cells (CD4Asunto(s)
Enfermedad de la Arteria Coronaria
, Placa Aterosclerótica
, Linfocitos T
, Antígenos
, Células Clonales/inmunología
, Enfermedad de la Arteria Coronaria/inmunología
, Células Endoteliales
, Epítopos
, Cadenas alfa de HLA-DR
, Humanos
, Activación de Linfocitos
, Placa Aterosclerótica/inmunología
, Linfocitos T/inmunología
RESUMEN
Inositol 1,4,5-trisphosphate receptors (IP3Rs) are a family of intracellular Ca2+ release channels located on the ER membrane, which in mammals consist of 3 different subtypes (IP3R1, IP3R2, and IP3R3) encoded by 3 genes, Itpr1, Itpr2, and Itpr3, respectively. Studies utilizing genetic knockout mouse models have demonstrated that IP3Rs are essential for embryonic survival in a redundant manner. Deletion of both IP3R1 and IP3R2 has been shown to cause cardiovascular defects and embryonic lethality. However, it remains unknown which cell types account for the cardiovascular defects in IP3R1 and IP3R2 double knockout (DKO) mice. In this study, we generated conditional IP3R1 and IP3R2 knockout mouse models with both genes deleted in specific cardiovascular cell lineages. Our results revealed that deletion of IP3R1 and IP3R2 in cardiomyocytes by TnT-Cre, in endothelial / hematopoietic cells by Tie2-Cre and Flk1-Cre, or in early precursors of the cardiovascular lineages by Mesp1-Cre, resulted in no phenotypes. This demonstrated that deletion of both IP3R genes in cardiovascular cell lineages cannot account for the cardiovascular defects and embryonic lethality observed in DKO mice. We then revisited and performed more detailed phenotypic analysis in DKO embryos, and found that DKO embryos developed cardiovascular defects including reduced size of aortas, enlarged cardiac chambers, as well as growth retardation at embryonic day (E) 9.5, but in varied degrees of severity. Interestingly, we also observed allantoic-placental defects including reduced sizes of umbilical vessels and reduced depth of placental labyrinth in DKO embryos, which could occur independently from other phenotypes in DKO embryos even without obvious growth retardation. Furthermore, deletion of both IP3R1 and IP3R2 by the epiblast-specific Meox2-Cre, which targets all the fetal tissues and extraembryonic mesoderm but not extraembryonic trophoblast cells, also resulted in embryonic lethality and similar allantoic-placental defects. Taken together, our results demonstrated that IP3R1 and IP3R2 play an essential and redundant role in maintaining the integrity of fetal-maternal connection and embryonic viability.
Asunto(s)
Retardo del Crecimiento Fetal/genética , Corazón Fetal/metabolismo , Cardiopatías Congénitas/genética , Receptores de Inositol 1,4,5-Trifosfato/genética , Placenta/metabolismo , Animales , Células Progenitoras Endoteliales/metabolismo , Femenino , Corazón Fetal/embriología , Eliminación de Gen , Masculino , Ratones , Ratones Endogámicos C57BL , Miocitos Cardíacos/metabolismo , Placenta/embriología , EmbarazoRESUMEN
Thrombosis has long been reported as a potentially deadly complication of respiratory viral infections and has recently received much attention during the global coronavirus disease 2019 pandemic. Increased risk of myocardial infarction has been reported during active infections with respiratory viruses, including influenza and severe acute respiratory syndrome coronavirus 2, which persists even after the virus has cleared. These clinical observations suggest an ongoing interaction between these respiratory viruses with the host's coagulation and immune systems that is initiated at the time of infection but may continue long after the virus has been cleared. In this review, we discuss the epidemiology of viral-associated myocardial infarction, highlight recent clinical studies supporting a causal connection, and detail how the virus' interaction with the host's coagulation and immune systems can potentially mediate arterial thrombosis.
Asunto(s)
COVID-19 , Gripe Humana , Trombosis , Humanos , Inflamación , Gripe Humana/complicaciones , SARS-CoV-2 , Trombosis/complicacionesAsunto(s)
Síndrome de Barth , Ácido Linoleico , Humanos , Aceite de Cártamo , Dieta , Suplementos Dietéticos/efectos adversosRESUMEN
Heart failure is one of the leading causes of morbidity and mortality worldwide. In cardiomyocytes, mitochondria are not only essential organelles providing more than 90% of the ATP necessary for contraction, but they also play critical roles in regulating intracellular Ca2+ signaling, lipid metabolism, production of reactive oxygen species (ROS), and apoptosis. Because mitochondrial DNA only encodes 13 proteins, most mitochondrial proteins are nuclear DNA-encoded, synthesized, and transported from the cytoplasm, refolded in the matrix to function alone or as a part of a complex, and degraded if damaged or incorrectly folded. Mitochondria possess a set of endogenous chaperones and proteases to maintain mitochondrial protein homeostasis. Perturbation of mitochondrial protein homeostasis usually precedes disruption of the whole mitochondrial quality control system and is recognized as one of the hallmarks of cardiomyocyte dysfunction and death. In this review, we focus on mitochondrial chaperones and proteases and summarize recent advances in understanding how these proteins are involved in the initiation and progression of heart failure.