Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Environ Manage ; 209: 440-451, 2018 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-29309967

RESUMEN

The Huang-Huai-Hai Plain (HHH) is typical of China's farming area, and was predicted as one of the fastest growing areas of urbanization in the world. Since the turn of the new millennium, construction land and farmland transitions in this region driven by rapid urbanization have resulted in dramatic loss of farmland, which triggered a serious threat to regional even national food security. In this paper, the coupling relationships between per capita construction land transition (PCCT) and per capita farmland transition (PCFT) in the HHH and their implications for regional food security are analyzed. During 2000-2015, the farmland decreased by 8.59%, 72.25% of which were occupied by construction land. There are two major coupling types between PCCT and PCFT, one is the double increasing of per capita construction land area (PCCA) and per capita farmland area (PCFA); another is the increasing of PCCA and the decreasing of PCFA. The fluctuant increasing of PCCT and decreasing of PCFT coexisted and presented symmetrical coupling characteristics in space. Physical, location, transportation and socio-economic factors play significantly different roles in driving PCCT and PCFT. The implications for ensuring food security involve promoting the reclamation and redevelopment of inefficient and unused urban-rural construction land, reducing inefficient occupation of farmland resources, developing appropriate scale management of agriculture, and establishing a better social security system to smoothly settle down the floating rural population in the city.


Asunto(s)
Agricultura , Abastecimiento de Alimentos , Urbanización , China , Ciudades , Geografía , Humanos , Población Urbana
2.
Acta Biomater ; 182: 199-212, 2024 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-38734283

RESUMEN

Reducing plaque lipid content and enhancing plaque stability without causing extensive apoptosis of foam cells are ideal requirements for developing a safe and effective treatment of atherosclerosis. In this study, we synthesized IR780-Gd-OPN nanomicelles by conjugating osteopontin (OPN) and loading a gadolinium-macrocyclic ligand (Gd-DOTA) onto near-infrared dye IR780-polyethylene glycol polymer. The nanomicelles were employed for mild phototherapy of atherosclerotic plaques and dual-mode imaging with near-infrared fluorescence and magnetic resonance. In vitro results reveal that the mild phototherapy mediated by IR780-Gd-OPN nanomicelles not only activates heat shock protein (HSP) 27 to protect foam cells against apoptosis but also inhibits the nuclear factor kappa-B (NF-κB) pathway to regulate lipid metabolism and macrophage polarization, thereby diminishing the inflammatory response. In vivo results further validate that mild phototherapy effectively reduces plaque lipid content and size while simultaneously enhancing plaque stability by regulating the ratio of M1 and M2-type macrophages. In summary, this study presents a promising approach for developing a safe and highly efficient method for the precise therapeutic visualization of atherosclerosis. STATEMENT OF SIGNIFICANCE: The rupture of unstable atherosclerotic plaques is a major cause of high mortality rates in cardiovascular diseases. Therefore, the ideal outcome of atherosclerosis treatment is to reduce plaque size while enhancing plaque stability. To address this challenge, we designed IR780-Gd-OPN nanomicelles for mild phototherapy of atherosclerosis. This treatment can effectively reduce plaque size while significantly improving plaque stability by increasing collagen fiber content and elevating the ratio of M2/M1 macrophages, which is mainly attributed to the inhibition of the NF-κB signaling pathway by mild phototherapy-activated HSP27. In summary, our proposed mild phototherapy strategy provides a promising approach for safe and effective treatment of atherosclerosis.


Asunto(s)
Micelas , FN-kappa B , Fototerapia , Placa Aterosclerótica , Placa Aterosclerótica/patología , Animales , FN-kappa B/metabolismo , Ratones , Indoles/química , Indoles/farmacología , Masculino , Gadolinio/química , Gadolinio/farmacología , Células RAW 264.7 , Transducción de Señal/efectos de los fármacos , Nanopartículas/química , Ratones Endogámicos C57BL , Progresión de la Enfermedad , Humanos
3.
Regen Biomater ; 10: rbad031, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37033325

RESUMEN

Since apoptosis of foam, cells can induce plaque instability, reducing intracellular lipid content while protecting foam cells from apoptosis is beneficial for the safe and efficient therapy of atherosclerosis. In this study, osteopontin-coupled polydopamine (PDA-OPN) nanoparticles were synthesized and applied to target mild photothermal therapy (PTT) of atherosclerosis. The results from laser confocal microscopy indicate that PDA-OPN nanoparticles can be specially recognized and absorbed by foam cells. Under near-infrared laser irradiation, the mild photothermal generated by PDA-OPN decreases intracellular lipid accumulation but does not induce cell apoptosis. In vivo treatments demonstrate that mild PTT can substantially reduce plaque area and improve plaque stability by upregulating the expression of plaque fibrosis in ApoE-/- mice. Our findings reinforce that the PDA-OPN nanoparticle-mediated mild PTT can inhibit atherosclerotic progression, which provides new insights for developing safe and effective treatment methods for atherosclerosis.

4.
APL Bioeng ; 6(4): 041501, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36483980

RESUMEN

Atherosclerosis, a systemic chronic inflammatory disease, can lead to thrombosis and vascular occlusion, thereby inducing a series of serious vascular diseases. Currently, distinguishing unstable plaques early and achieving more effective treatment are the two main clinical concerns in atherosclerosis. Organic nanoparticles have great potential in atherosclerotic imaging and treatment, showing superior biocompatibility, drug-loading capacity, and synthesis. This article illustrates the process of atherosclerosis onset and the key targeted cells, then systematically summarizes recent progress made in organic nanoparticle-based imaging of different types of targeted cells and therapeutic methods for atherosclerosis, including optical and acoustic-induced therapy, drug delivery, gene therapy, and immunotherapy. Finally, we discuss the major impediments that need to be addressed in future clinical practice. We believe this article will help readers to develop a comprehensive and in-depth understanding of organic nanoparticle-based atherosclerotic imaging and treatment, thus advancing further development of anti-atherosclerosis therapies.

5.
Comput Math Methods Med ; 2022: 3016532, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35516452

RESUMEN

The coronary atherosclerotic heart disease is a common cardiovascular disease with high morbidity, disability, and societal burden. Early, precise, and comprehensive diagnosis of the coronary atherosclerotic heart disease is of great significance. The rise of artificial intelligence technologies, represented by machine learning and deep learning, provides new methods to address the above issues. In recent years, artificial intelligence has achieved an extraordinary progress in multiple aspects of coronary atherosclerotic heart disease diagnosis, including the construction of intelligent diagnostic models based on artificial intelligence algorithms, applications of artificial intelligence algorithms in coronary angiography, coronary CT angiography, intravascular imaging, cardiac magnetic resonance, and functional parameters. This paper presents a comprehensive review of the technical background and current state of research on the application of artificial intelligence in the diagnosis of the coronary atherosclerotic heart disease and analyzes recent challenges and perspectives in this field.


Asunto(s)
Aterosclerosis , Aprendizaje Profundo , Cardiopatías , Algoritmos , Inteligencia Artificial , Angiografía Coronaria , Humanos , Aprendizaje Automático
6.
Bioact Mater ; 17: 18-28, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35386468

RESUMEN

Given that apoptosis increases the risk of plaque rupture, strategies that reduce intracellular lipid levels without killing foam cells are warranted for safe and effective treatment of atherosclerosis. In this study, a mild phototherapy strategy is carried out to achieve the hypothesis. Foam cell-targeted nanoprobes that allow photothermal therapy (PTT) and/or photodynamic therapy (PDT) were prepared by loading hyaluronan and porphine onto black TiO2 nanoparticles. The results showed that when temperatures below 45 °C, PTT alone and PTT + PDT significantly reduced the intracellular lipid burden without inducing evidently apoptosis or necrosis. In contrast, the use of PDT alone resulted in only a slight reduction in lipid levels and induced massive apoptosis or necrosis. The protective effect against apoptosis or necrosis after mild-temperature PTT and PTT + PDT was correlated with the upregulation of heat shock protein 27. Further, mild-temperature PTT and PTT + PDT attenuated intracellular cholesterol biosynthesis and excess cholesterol uptake via the SREBP2/LDLR pathway, and also triggered ABCA1-mediated cholesterol efflux, ultimately inhibiting lipid accumulation in foam cells. Our results offer new insights into the mechanism of lipid regulation in foam cells and indicate that the black TiO2 nanoprobes could allow safer and more effective phototherapy of atherosclerosis.

7.
J Integr Med ; 19(4): 317-326, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33789839

RESUMEN

BACKGROUND: The therapeutic evidence collected from well-designed studies is needed to help manage the global pandemic of the coronavirus disease 2019 (COVID-19). Evaluating the quality of therapeutic data collected during this most recent pandemic is important for improving future clinical research under similar circumstances. OBJECTIVE: To assess the methodological quality and variability in implementation of randomized controlled trials (RCTs) for treating COVID-19, and to analyze the support that should be provided to improve data collected during an urgent pandemic situation. SEARCH STRATEGY: PubMed, Excerpta Medica Database, China National Knowledge Infrastructure, Wanfang, and Chongqing VIP, and the preprint repositories including Social Science Research Network and MedRxiv were systematically searched, up to September 30, 2020, using the keywords "coronavirus disease 2019 (COVID-19)," "2019 novel coronavirus (2019-nCoV)," "severe acute respiratory syndrome-related coronavirus-2 (SARS-CoV-2)," "novel coronavirus pneumonia (NCP)," "randomized controlled trial (RCT)" and "random." INCLUSION CRITERIA: RCTs studying the treatment of COVID-19 were eligible for inclusion. DATA EXTRACTION AND ANALYSIS: Screening of published RCTs for inclusion and data extraction were each conducted by two researchers. Analysis of general information on COVID-19 RCTs was done using descriptive statistics. Methodological quality was assessed using the risk-of-bias tools in the Cochrane Handbook for Systematic Reviews of Interventions (Version 5.1.0). Variability in implementation was assessed by comparing consistency between RCT reports and registration information. RESULTS: A total of 5886 COVID-19 RCTs were identified. Eighty-one RCTs were finally included, of which, 45 had registration information. Methodological quality of the RTCs was not optimal due to deficiencies in five main domains: allocation concealment, blinding of participants and personnel, blinding of outcome assessment, incomplete outcome data, and selective reporting. Comparisons of consistency between published protocols and registration information showed that the 45 RCTs with registration information had common deviations in seven items: inclusion and exclusion criteria, sample size, outcomes, research sites of recruitment, interventions, and blinding. CONCLUSION: The methodological quality of COVID-19 RCTs conducted in early to mid 2020 was consistently low and variability in implementation was common. More support for implementing high-quality methodology is needed to obtain the quality of therapeutic evidence needed to provide positive guidance for clinical care. We make an urgent appeal for accelerating the construction of a collaborative sharing platform and preparing multidisciplinary talent and professional teams to conduct excellent clinical research when faced with epidemic diseases of the future. Further, variability in RCT implementation should be clearly reported and interpreted to improve the utility of data resulting from those trials.


Asunto(s)
COVID-19/epidemiología , COVID-19/terapia , Ensayos Clínicos Controlados Aleatorios como Asunto/métodos , Ensayos Clínicos Controlados Aleatorios como Asunto/normas , COVID-19/virología , Humanos , Pandemias , SARS-CoV-2/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA