Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(43): e2203180119, 2022 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-36269860

RESUMEN

The phosphoinositide 3-kinase (PI3K) pathway represents the most hyperactivated oncogenic pathway in triple-negative breast cancer (TNBC), a highly aggressive tumor subtype encompassing ∼15% of breast cancers and which possesses no targeted therapeutics. Despite critical contributions of its signaling arms to disease pathogenesis, PI3K pathway inhibitors have not achieved expected clinical responses in TNBC, owing largely to a still-incomplete understanding of the compensatory cascades that operate downstream of PI3K. Here, we investigated the contributions of long noncoding RNAs (lncRNAs) to PI3K activities in clinical and experimental TNBC and discovered a prominent role for LINC01133 as a PI3K-AKT signaling effector. We found that LINC01133 exerted protumorigenic roles in TNBC and that it governed a previously undescribed mTOR Complex 2 (mTORC2)-dependent pathway that activated AKT in a PI3K-independent manner. Mechanistically, LINC01133 induced the expression of the mTORC2 component PROTOR1/PRR5 by competitively coupling away its negative messenger RNA (mRNA) regulator, the heterogeneous nuclear ribonucleoprotein A2/B1 (hnRNPA2B1). PROTOR1/PRR5 in turn was sufficient and necessary for LINC01133-triggered functions, casting previously unappreciated roles for this Rictor-binding protein in cellular signaling and growth. Notably, LINC01133 antagonism undermined cellular growth, and we show that the LINC01133-PROTOR1/PRR5 pathway was tightly associated with TNBC poor patient survival. Altogether, our findings uncovered a lncRNA-driven signaling shunt that acts as a critical determinant of malignancy downstream of the PI3K pathway and as a potential RNA therapeutic target in clinical TNBC management.


Asunto(s)
ARN Largo no Codificante , Neoplasias de la Mama Triple Negativas , Humanos , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Neoplasias de la Mama Triple Negativas/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatidilinositol 3-Quinasa/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proliferación Celular/genética , Inhibidores de las Quinasa Fosfoinosítidos-3 , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , ARN Mensajero , Ribonucleoproteínas Nucleares Heterogéneas , Línea Celular Tumoral
2.
Semin Cancer Biol ; 86(Pt 2): 81-92, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36087857

RESUMEN

Mesenchymal stem/stromal cells (MSCs) encompass a heterogeneous population of fibroblastic progenitor cells that reside in multiple tissues around the body. They are endowed with capacities to differentiate into multiple connective tissue lineages, including chondrocytes, adipocytes, and osteoblasts, and are thought to function as trophic cells recruited to sites of injury and inflammation where they contribute to tissue regeneration. In keeping with these roles, MSCs also to home to sites of breast tumorigenesis, akin to their migration to wounds, and participate in tumor stroma formation. Mounting evidence over the past two decades has described the critical regulatory roles for tumor-associated MSCs in various aspects of breast tumor pathogenesis, be it tumor initiation, growth, angiogenesis, tumor microenvironment formation, immune evasion, cancer cell migration, invasion, survival, therapeutic resistance, dissemination, and metastatic colonization. In this review, we present a brief summary of the role of MSCs in breast tumor development and progression, highlight some of the molecular frameworks underlying their pro-malignant contributions, and present evidence of their promising utility in breast cancer therapy.


Asunto(s)
Neoplasias de la Mama , Células Madre Mesenquimatosas , Humanos , Femenino , Neoplasias de la Mama/etiología , Neoplasias de la Mama/terapia , Neoplasias de la Mama/patología , Células Madre Mesenquimatosas/patología , Microambiente Tumoral , Movimiento Celular , Adipocitos , Transformación Celular Neoplásica/patología
3.
Int J Mol Sci ; 24(12)2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37373013

RESUMEN

To investigate the potential of H2-calponin (CNN2) as a serum biomarker for hepatocellular carcinoma (HCC), this study employed the serological analysis of recombinantly expressed cDNA clone (SEREX) technique to identify the presence of CNN2 antibody in the serum of patients with HCC and other tumors. The CNN2 protein was produced through genetic engineering and used as an antigen to determine the positive rate of serum CNN2 autoantibodies via indirect enzyme-linked immunosorbent assay (ELISA). In addition, the mRNA and protein expressions of CNN2 in cells and tissues were evaluated using RT-PCR, in situ RT-PCR, and immunohistochemistry methods. The HCC group exhibited a significantly higher positive rate of anti-CNN2 antibody (54.8%) compared to gastric cancer (6.5%), lung cancer (3.2%), rectal cancer (9.7%), hepatitis (3.2%), liver cirrhosis (3.2%), and normal tissues (3.1%). The positive rates of CNN2 mRNA in HCC with metastasis, non-metastatic HCC, lung cancer, gastric cancer, nasopharyngeal cancer, liver cirrhosis, and hepatitis were 56.67%, 41.67%, 17.5%, 10.0%, 20.0%, 53.13%, and 41.67%, respectively. Meanwhile, the positive rates of CNN2 protein were 63.33%, 37.5%, 17.5%, 27.5%, 45%, 31.25%, and 20.83%, respectively. The down-regulation of CNN2 could inhibit the migration and invasion of liver cancer cells. CNN2 is a newly identified HCC-associated antigen that is implicated in the migration and invasion of liver cancer cells, making it a promising target for liver cancer therapy.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Neoplasias Nasofaríngeas , Humanos , Neoplasias Hepáticas/metabolismo , Carcinoma Hepatocelular/metabolismo , Autoanticuerpos , Cirrosis Hepática , ARN Mensajero , Biomarcadores de Tumor/genética , Calponinas
4.
J Cell Mol Med ; 24(14): 8069-8077, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32495469

RESUMEN

Accumulating evidence suggests that ubiquitin-like with plant homeodomain and ring finger domains 1 (UHRF1) is overexpressed in non-small cell lung cancer (NSCLC); however, the expression and function of UHRF1 in the subtype of NSCLC are still unclear. Here, we investigate the expression and prognosis traits of UHRF1 in large NSCLC cohorts and explore the molecular characters during UHRF1 up-regulation. We find that UHRF1 is predominantly overexpressed in lung squamous cell carcinoma (SCC). Surprisingly, the up-regulated UHRF1 is only associated with the overall survival of lung adenocarcinoma (ADC) and knockdown of UHRF1 dramatically attenuates ADC tumorigenesis. Mechanically, we identify a hub gene that includes a total of 55 UHRF1-related genes, which are tightly associated with cell cycle pathway and yield to the poor clinical outcome in ADC patients. What's more, we observe knockdown of UHRF1 only affects ADC cells cycle and induces cell apoptosis. These results suggest that up-regulated UHRF1 only contributes to lung ADC survival by triggering cell cycle pathway, and it may be a prognostic biomarker for lung ADC patients.


Asunto(s)
Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/mortalidad , Biomarcadores de Tumor , Proteínas Potenciadoras de Unión a CCAAT/genética , Ciclo Celular/genética , Ubiquitina-Proteína Ligasas/genética , Adenocarcinoma del Pulmón/patología , Línea Celular Tumoral , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Biología Computacional/métodos , Expresión Génica , Perfilación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Estimación de Kaplan-Meier , Pronóstico
5.
Stem Cells ; 37(10): 1281-1292, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31283068

RESUMEN

The fibrotic tumor microenvironment is a critical player in the pathogenesis of triple-negative breast cancers (TNBCs), with the presence of fibroblastic infiltrates particularly correlating with tumors that are clinically advanced. On this front, we previously demonstrated that TNBCs are highly enriched in fibroblastic stromal progenitor cells called mesenchymal stem/stromal cells (MSCs) and that such cells play critical roles in promoting TNBC initiation and progression. How TNBC cells respond to MSC stimulation, however, is not fully understood, and stands to reveal contextual signals used by TNBC cells during tumor development and provide biomarkers and therapeutic targets of pertinence to TNBC management. Here, we report that MSCs strongly induced the long noncoding RNA (lncRNA) LINC01133 in neighboring TNBC cells. Indeed, although lncRNAs have been tightly associated with cancer development, their contributions to breast cancer in general, and to TNBC pathogenesis in particular, have not been fully elucidated, and we set out to determine if LINC01133 regulated malignant traits in TNBC cells. We establish that LINC01133 is sufficient, on its own, in promoting phenotypic and growth characteristics of cancer stem cell-like cells, and that it is a direct mediator of the MSC-triggered miR-199a-FOXP2 pathway in TNBC models. Furthermore, we show that LINC01133 is a critical regulator of the pluripotency-determining gene Kruppel-Like Factor 4 (KLF4), and that it represents a biomarker and prognosticator of disease outcome in the clinic. Collectively, our findings introduce LINC01133 as a novel functional driver of malignancy and a potential theranostic in TNBC. Stem Cells 2019;37:1281-1292.


Asunto(s)
Células Madre Neoplásicas/metabolismo , ARN Largo no Codificante/genética , Neoplasias de la Mama Triple Negativas/genética , Línea Celular Tumoral , Proliferación Celular/fisiología , Femenino , Humanos , Factor 4 Similar a Kruppel , Células Madre Neoplásicas/patología , Fenotipo , ARN Largo no Codificante/metabolismo , Neoplasias de la Mama Triple Negativas/dietoterapia , Neoplasias de la Mama Triple Negativas/patología , Microambiente Tumoral
6.
Cancer Cell Int ; 20: 106, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32265595

RESUMEN

BACKGROUND: Lung cancer is the leading cause of cancer-related mortality globally. Discovering effective biomarkers for early diagnosis and prognosis is important to reduce the mortality rate and ensure efficient therapy for lung cancer patients. C-type lectin domain family 3 member B (CLEC3B) has been reported in various cancers, but its correlation with lung cancer remains elusive. METHODS: The GEO, TCGA and Oncomine databases were analyzed to examine the expression of CLEC3B in lung cancer. The CLEC3B mRNA levels in 15 patient tissue samples were detected by real-time PCR and the CLEC3B protein levels in 34 patient tissue samples were detected by immunohistochemistry. A Chi-square test was performed to analyze the correlation of CLEC3B expression and clinicopathological factors. The diagnostic value of CLEC3B was revealed by receiver operating characteristic (ROC) curves. Univariate and multivariate Cox proportional hazards regression models and Kaplan-Meier plots were used to evaluate the prognostic value of CLEC3B in lung cancer. The TIMER database was used to evaluate the correlation of CLEC3B and immune infiltration. Gene set enrichment analysis revealed tumor-associated biological processes related to CLEC3B. RESULTS: CLEC3B is significantly downregulated in lung cancer patients compared with nontumor controls according to database analysis and patient tissue sample detection (p < 0.001). Specifically, CLEC3B is significantly downregulated in stage IA lung cancer patients (p < 0.001) and has a high diagnostic accuracy (area under the receiver operating characteristic curve > 0.9). Moreover, low expression of CLEC3B is related to poor progression-free survival (HR = 0.60, 95% CI 0.49-0.74, p = 8.3e-07) and overall survival (HR = 0.66, 95% CI 0.58-0.75, p = 2.1e-10), indicating it as a risk factor for lung cancer. Multivariate analysis value showed that low expression of CLEC3B may be an independent risk factor for disease-free survival in lung cancer patients (HR = 0.655, 95% CI 0.430-0.996, Cox p = 0.048). In addition, we also investigated the potential role of CLEC3B in tumor-immune interactions and found that CLEC3B might be associated with the immune infiltration and immune activation of lung cancer, especially in squamous cell carcinoma. CONCLUSIONS: Our findings indicate that CLEC3B expression is downregulated in lung cancer and reveal the diagnostic and prognostic potential of CLEC3B in lung cancer and its potential as an immune-related therapeutic target in lung cancer.

7.
J Cell Biochem ; 120(4): 5936-5948, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30362152

RESUMEN

Metastatic disease remains the primary cause of death for individuals with T cell acute lymphoblastic leukemia (T-ALL). microRNAs (miRNAs) play important roles in the pathogenesis of T-ALL by inhibiting gene expression at posttranscriptional levels. The goal of the current project is to identify any significant miRNAs in T-ALL metastasis. We observed miR-146b-5p to be downregulated in T-ALL patients and cell lines, and bioinformatics analysis implicated miR-146b-5p in the hematopoietic system. miR-146b-5p inhibited the migration and invasion in T-ALL cells. Interleukin-17A (IL-17A) was predicted to be a target of miR-146b-5p; this was confirmed by luciferase assays. Interestingly, T-ALL patients and cell lines secreted IL-17A and expressed the IL-17A receptor (IL-17RA). IL-17A/IL-17RA interactions promoted strong T-ALL cell migration and invasion responses. Gene set enrichment analysis (GSEA) and quantitative polymerase chain reaction (qPCR) analysis indicated that matrix metallopeptidase-9 (MMP9), was a potential downstream effector of IL-17A activation, and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling was also implicated in this process. Moreover, IL-17A activation promoted T-ALL cell metastasis to the liver in IL17A -/- mouse models. These results indicate that reduced miR-146b-5p expression in T-ALL may lead to the upregulation of IL-17A, which then promotes T-ALL cell migration and invasion by upregulating MMP9 via NF-κB signaling.


Asunto(s)
Interleucina-17/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Linfocitos T/metabolismo , Animales , Apoptosis/genética , Apoptosis/fisiología , Western Blotting , Ciclo Celular/genética , Ciclo Celular/fisiología , Línea Celular Tumoral , Movimiento Celular/genética , Movimiento Celular/fisiología , Proliferación Celular/genética , Proliferación Celular/fisiología , Biología Computacional , Quinasas MAP Reguladas por Señal Extracelular/genética , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Humanos , Interleucina-17/genética , Masculino , Ratones , Ratones Endogámicos C57BL , MicroARNs , Reacción en Cadena en Tiempo Real de la Polimerasa , Ensayos Antitumor por Modelo de Xenoinjerto
8.
Science ; 380(6652): 1372-1380, 2023 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-37384704

RESUMEN

Adenosine monophosphate-activated protein kinase (AMPK) activity is stimulated to promote metabolic adaptation upon energy stress. However, sustained metabolic stress may cause cell death. The mechanisms by which AMPK dictates cell death are not fully understood. We report that metabolic stress promoted receptor-interacting protein kinase 1 (RIPK1) activation mediated by TRAIL receptors, whereas AMPK inhibited RIPK1 by phosphorylation at Ser415 to suppress energy stress-induced cell death. Inhibiting pS415-RIPK1 by Ampk deficiency or RIPK1 S415A mutation promoted RIPK1 activation. Furthermore, genetic inactivation of RIPK1 protected against ischemic injury in myeloid Ampkα1-deficient mice. Our studies reveal that AMPK phosphorylation of RIPK1 represents a crucial metabolic checkpoint, which dictates cell fate response to metabolic stress, and highlight a previously unappreciated role for the AMPK-RIPK1 axis in integrating metabolism, cell death, and inflammation.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Metabolismo Energético , Necroptosis , Proteína Serina-Treonina Quinasas de Interacción con Receptores , Estrés Fisiológico , Animales , Ratones , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Fosforilación , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Inflamación/metabolismo , Isquemia/metabolismo
9.
Nat Cell Biol ; 25(7): 950-962, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37400498

RESUMEN

The prolyl hydroxylation of hypoxia-inducible factor 1α (HIF-1α) mediated by the EGLN-pVHL pathway represents a classic signalling mechanism that mediates cellular adaptation under hypoxia. Here we identify RIPK1, a known regulator of cell death mediated by tumour necrosis factor receptor 1 (TNFR1), as a target of EGLN1-pVHL. Prolyl hydroxylation of RIPK1 mediated by EGLN1 promotes the binding of RIPK1 with pVHL to suppress its activation under normoxic conditions. Prolonged hypoxia promotes the activation of RIPK1 kinase by modulating its proline hydroxylation, independent of the TNFα-TNFR1 pathway. As such, inhibiting proline hydroxylation of RIPK1 promotes RIPK1 activation to trigger cell death and inflammation. Hepatocyte-specific Vhl deficiency promoted RIPK1-dependent apoptosis to mediate liver pathology. Our findings illustrate a key role of the EGLN-pVHL pathway in suppressing RIPK1 activation under normoxic conditions to promote cell survival and a model by which hypoxia promotes RIPK1 activation through modulating its proline hydroxylation to mediate cell death and inflammation in human diseases, independent of TNFR1.


Asunto(s)
Necroptosis , Receptores Tipo I de Factores de Necrosis Tumoral , Humanos , Receptores Tipo I de Factores de Necrosis Tumoral/genética , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Hidroxilación , Hipoxia , Prolina/metabolismo , Inflamación , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo
10.
STAR Protoc ; 3(2): 101413, 2022 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-35634360

RESUMEN

We provide a protocol for gain-of-function (GOF) cDNA screen of genes that foster cancer cell colonization of secondary tissues, the last and most lethal step of the metastasis cascade. We present techniques for cDNA viral library preparation and delivery leading up to the recovery of colonization-promoting sequences in a proof-of-concept DU145-based mouse model of pulmonary metastasis. Adapted to other cDNA libraries and cancer models, this approach would prove widely useful in enumerating intrinsic genetic determinants underlying metastatic colonization. For complete details on the use and execution of this protocol, please refer to Tu et al. (2021).


Asunto(s)
Mutación con Ganancia de Función , Neoplasias Pulmonares , Animales , ADN Complementario/genética , Modelos Animales de Enfermedad , Biblioteca de Genes , Neoplasias Pulmonares/genética , Ratones
11.
NPJ Breast Cancer ; 7(1): 69, 2021 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-34059683

RESUMEN

The development of triple-negative breast cancer (TNBC) is critically regulated by certain tumor-microenvironment-associated cells called mesenchymal stem/stromal cells (MSCs), which we and others have shown promote TNBC progression by activating pro-malignant signaling in neighboring cancer cells. Characterization of these cascades would better our understanding of TNBC biology and bring about therapeutics that eliminate the morbidity and mortality associated with advanced disease. Here, we focused on the emerging class of RNAs called long non-coding RNAs or lncRNAs and utilized a MSC-supported TNBC progression model to identify specific family members of functional relevance to TNBC pathogenesis. Indeed, although some have been described to play functional roles in TNBC, activities of lncRNAs as mediators of tumor-microenvironment-driven TNBC development remain to be fully explored. We report that MSCs stimulate robust expression of LINC01119 in TNBC cells, which in turn induces suppressor of cytokine signaling 5 (SOCS5), leading to accelerated cancer cell growth and tumorigenesis. We show that LINC01119 and SOCS5 exhibit tight correlation across multiple breast cancer gene sets and that they are highly enriched in TNBC patient cohorts. Importantly, we present evidence that the LINC01119-SOCS5 axis represents a powerful prognostic indicator of adverse outcomes in TNBC patients, and demonstrate that its repression severely impairs cancer cell growth. Altogether, our findings identify LINC01119 as a major driver of TNBC development and delineate critical non-coding RNA theranostics of potential translational utility in the management of advanced TNBC, a class of tumors in most need of effective and targeted therapy.

12.
iScience ; 24(5): 102425, 2021 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-34036247

RESUMEN

Elucidations of the factors that promote the growth of disseminated tumor cells (DTCs) into life-threatening lesions stand to provide much needed prognostic and therapeutic targets of translational utility for patients with metastatic cancer. To identify such regulators, we conducted gain-of-function cDNA library screening to discover genes that foster prostate cancer cell colonization of mouse lungs as an experimental model. Our efforts identified the metabolic enzyme aldolase A (ALDOA) as a driver of cancer cell motility, anchorage-independent growth, and metastatic colonization, and as a prognosticator of adverse patient outcome across many malignancies, including prostate, breast, pancreatic, and liver cancers. Metabolomics coupled with biochemical and functional analyses revealed that ALDOA triggered the activation of adenosine-5'-monophosphate (AMP)-activated protein kinase (AMPK), which we demonstrate played essential promalignant activities in ALDOA-expressing cells. Collectively, these findings unveiled vivo approaches to identify metastatic colonization regulators and uncovered previously undescribed roles for ALDOA-AMPK pathway in tumor progression.

13.
Nat Commun ; 12(1): 5386, 2021 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-34508104

RESUMEN

Although inhibitors targeting CDK4/6 kinases (CDK4/6i) have shown promising clinical prospect in treating ER+/HER2- breast cancers, acquired drug resistance is frequently observed and mechanistic knowledge is needed to harness their full clinical potential. Here, we report that inhibition of CDK4/6 promotes ßTrCP1-mediated ubiquitination and proteasomal degradation of RB1, and facilitates SP1-mediated CDK6 transcriptional activation. Intriguingly, suppression of CK1ε not only efficiently prevents RB1 from degradation, but also prevents CDK4/6i-induced CDK6 upregulation by modulating SP1 protein stability, thereby enhancing CDK4/6i efficacy and overcoming resistance to CDK4/6i in vitro. Using xenograft and PDX models, we further demonstrate that combined inhibition of CK1ε and CDK4/6 results in marked suppression of tumor growth in vivo. Altogether, these results uncover the molecular mechanisms by which CDK4/6i treatment alters RB1 and CDK6 protein abundance, thereby driving the acquisition of CDK4/6i resistance. Importantly, we identify CK1ε as an effective target for potentiating the therapeutic efficacy of CDK4/6 inhibitors.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Caseína Cinasa 1 épsilon/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Línea Celular Tumoral , Quinasa 4 Dependiente de la Ciclina/antagonistas & inhibidores , Quinasa 4 Dependiente de la Ciclina/metabolismo , Quinasa 6 Dependiente de la Ciclina/antagonistas & inhibidores , Quinasa 6 Dependiente de la Ciclina/metabolismo , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Sinergismo Farmacológico , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Inhibidores de Proteínas Quinasas/uso terapéutico , Estabilidad Proteica/efectos de los fármacos , Proteolisis/efectos de los fármacos , Proteínas de Unión a Retinoblastoma/metabolismo , Factor de Transcripción Sp1/metabolismo , Activación Transcripcional/efectos de los fármacos , Ubiquitina-Proteína Ligasas/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
14.
J Hematol Oncol ; 10(1): 62, 2017 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-28245841

RESUMEN

Cancer has been a major public health problem that has threatened human life worldwide throughout history. The main causes that contribute to the poor prognosis of cancer are metastasis and recurrence. Cancer stem cells are a group of tumor cells that possess self-renewal and differentiation ability, which is a vital cause of cancer metastasis and recurrence. Long non-coding RNAs refer to a class of RNAs that are longer than 200 nt and have no potential to code proteins, some of which can be specifically expressed in different tissues and different tumors. Long non-coding RNAs have great biological significance in the occurrence and progression of cancers. However, how long non-coding RNAs interact with cancer stem cells and then affect cancer metastasis and recurrence is not yet clear. Therefore, this review aims to summarize recent studies that focus on how long non-coding RNAs impact tumor occurrence and progression by affecting cancer stem cell self-renewal and differentiation in liver cancer, prostate cancer, breast cancer, and glioma.


Asunto(s)
Células Madre Neoplásicas/patología , ARN Largo no Codificante/fisiología , Neoplasias de la Mama/patología , Diferenciación Celular , Autorrenovación de las Células , Progresión de la Enfermedad , Femenino , Glioma/patología , Humanos , Neoplasias Hepáticas/patología , Masculino , Metástasis de la Neoplasia , Neoplasias de la Próstata/patología , ARN Largo no Codificante/farmacología , Recurrencia
15.
Oncol Lett ; 13(4): 2670-2678, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28454449

RESUMEN

Tripartite motif containing 28 (TRIM28) is a transcriptional regulator acting as an essential corepressor for Krüppel-associated box zinc finger domain-containing proteins in multiple tissue and cell types. An increasing number of studies have investigated the function of TRIM28; however, its prognostic value in breast cancer (BC) remains unclear. In the present study, the expression of TRIM28 was identified to be significantly higher in cancerous compared with healthy tissue samples. Furthermore, it was demonstrated that TRIM28 expression was significantly correlated with several clinicopathological characteristics of patients with BC, such as p53 mutation, tumor recurrence and Elston grade of the tumor. In addition, a protein-protein interaction network was created to illustrate the interactions of TRIM28 with other proteins. The prognostic value of TRIM28 in patients with BC was investigated using the Kaplan-Meier Plotter database, which revealed that high expression of TRIM28 is a predictor of poor prognosis in patients with BC. In conclusion, the results of the present study indicate that TRIM28 provides a survival advantage to patients with BC and is a novel prognostic biomarker, in addition to being a therapeutic target for the treatment of BC.

16.
Oncol Rep ; 37(2): 921-928, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27922681

RESUMEN

Chemoresistance is the main cause of treatment failure and high mortality in advanced lung cancer. Cisplatin, an important chemotherapeutic agent for lung cancer, has been observed to show enormously reduced chemotherapeutic efficacy owing to the development of chemoresistance. CXCR4, a stromal-derived-factor-1 specific chemokine receptor, is highly expressed in non-small cell lung cancer (NSCLC) tissues and participates in cancer progression by regulating cell growth, apoptosis or invasion. In this study, we therefore investigated whether CXCR4 plays a role in the cisplatin associated resistance in NSCLC. We detected the expression of CXCR4 in tissue specimens from 64 NSCLC patients by immunohistochemistry. Cisplatin-resistant NSCLC cells A549/DDP and its parental A549 cells were employed in this study. RNA interference was performed to silence the CXCR4. The influence of CXCR4 on tumor cell chemoresistance, apoptosis and growth, as well as the relationship between CXCR4 and the expression of cytochrome p450 associated molecule CYP1B1 in NSCLC were evaluated. Finally, we found CXCR4 was significantly highly expressed in cisplatin-resistant NSCLC patients and the A549/DDP cell line. CXCR4 inhibition by siRNA reversed chemoresistance and decreased tumor cell proliferation. Bioinformatics analysis showed that the expression of CYP1B1 had a positive correlation with CXCR4, the CYP1B1 silencing significantly decreased CXCR4 expression levels and cisplatin resistance. Immunohistochemistry also verified that CYP1B1 was upregulated in NSCLC tissues of cisplatin-resistant patients. In conclusion, our results indicate that overexpression of CXCR4 in NSCLC promotes cisplatin resistance via CXCR4-mediated CYP1B1 upregulation. Thus, it can be used as a potential therapeutic target in NSCLC chemoresistance patients and be used as a clinical predictor of cisplatin response.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/patología , Cisplatino/farmacología , Citocromo P-450 CYP1B1/metabolismo , Resistencia a Antineoplásicos , Neoplasias Pulmonares/patología , Receptores CXCR4/metabolismo , Adenocarcinoma/tratamiento farmacológico , Adenocarcinoma/metabolismo , Adenocarcinoma/patología , Anciano , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Western Blotting , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patología , Proliferación Celular/efectos de los fármacos , Citocromo P-450 CYP1B1/genética , Femenino , Técnica del Anticuerpo Fluorescente , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Técnicas para Inmunoenzimas , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Masculino , Estadificación de Neoplasias , Pronóstico , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores CXCR4/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Células Tumorales Cultivadas
17.
Oncotarget ; 8(24): 39033-39047, 2017 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-28380463

RESUMEN

Adult T-cell acute lymphoblastic leukemia (T-ALL) is a refractory leukemia. We previously showed that CCL25/CCR9 promotes T-ALL metastasis. In the present study, we assessed the effects of CCL25 on Wnt expression and the effects of Wnt5a and CCL25 on PI3K/Akt and RhoA activation. Transwell assays and mouse xenograft experiments were utilized to assess the effects of Wnt5a and CCL25 on MOLT4 cell invasion, migration and metastasis. The effects of Wnt5a on MOLT4 cell actin polarization and pseudopodium formation were examined using laser scanning confocal microscopy and scanning electron microscopy. CCL25 induced Wnt5a expression in MOLT4 cells by promoting protein kinase C (PKC) expression and activation. Wnt5a promoted MOLT4 cell migration, invasion, actin polarization, and lamellipodium and filopodia formation via PI3K/Akt-RhoA pathway activation. These effects were rescued by PI3K/Akt or RhoA knockdown or inhibition. Additionally, Wnt5a in cooperation with CCL25 promoted MOLT4 cell mouse liver metastasis and stimulated RhoA activation. These results show that CCL25/CCR9 upregulates Wnt5a by promoting PKC expression and activation in MOLT4 cells. This in turn promotes cell migration and invasion via PI3K/Akt-RhoA signaling, enhancing cell polarization and pseudopodium formation. These findings indicate that the PI3K/Akt-RhoA pathway is likely responsible for Wnt5a-induced adult T-ALL cell migration and invasion.


Asunto(s)
Movimiento Celular , Quimiocinas CC/metabolismo , Regulación Neoplásica de la Expresión Génica/fisiología , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patología , Transducción de Señal/fisiología , Proteína Wnt-5a/metabolismo , Animales , Línea Celular Tumoral , Xenoinjertos , Humanos , Ratones , Ratones SCID , Invasividad Neoplásica/patología , Metástasis de la Neoplasia
18.
Int J Oncol ; 50(2): 505-514, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28000861

RESUMEN

Metastasis is the major cause of death in patients with non-small cell lung cancer (NSCLC), and epithelial-mesenchymal transition (EMT) has been observed to be one of the key regulators of metastasis in certain cancers as it confers an invasive phenotype. CD133 is a widely used cancer stem cell (CSC) marker, and CD133-positive cancer cells are thought to be tumor-initiating cells with CSC characteristics, while CXCR4, a stromal-derived-factor-1 specific chemokine receptor, is highly expressed in NSCLC tissues and participates in cancer progression by regulating cell anti-apoptosis. We previously demonstrated that CXCR4 promotes NSCLC chemoresistance by upregulating CYP1B1, however, the relationship of CD133, CXCR4 and EMT processes in NSCLC metastasis are unclear. In this study, we detected a CD133 and CXCR4 high expression in tissue specimens from 64 NSCLC patients by immunohistochemistry, of which CD133 and CXCR4 were found to be positively associated with metastatic NSCLC patients. CD133 was found to promote NSCLC tumorigenesis and mediated the expression of CXCR4. Furthermore, CD133/CXCR4 co-expression was found to be an independent prognostic factor as shown by univariate and multivariate Cox regression analysis, and was observed to regulate the expression of EMT-related molecules and transcriptional factors in NSCLC. In addition, our results showed that E-cadherin and Vimentin were simultaneously downregulated and upregulated, in CD133+CXCR4+ A549 cells, respectively. While E-cadherin was upregulated and Vimentin was downregulated in metastatic NSCLC patients. Vimentin expression was also observed to have a positive correlation with CD133/CXCR4 co-expression in NSCLC patients and survival analysis results suggested that Vimentin high expression might be significantly associated with poor survival rates of the patients. Thus, these results suggest that the CD133/CXCR4/EMT axis may be a prognostic marker and may provide novel targets for combinational therapies in the treatment of NSCLC.


Asunto(s)
Antígeno AC133/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Transición Epitelial-Mesenquimal/fisiología , Neoplasias Pulmonares/patología , Receptores CXCR4/metabolismo , Adulto , Anciano , Biomarcadores de Tumor/análisis , Western Blotting , Carcinoma de Pulmón de Células no Pequeñas/mortalidad , Separación Celular , Transformación Celular Neoplásica/metabolismo , Femenino , Citometría de Flujo , Técnicas de Silenciamiento del Gen , Humanos , Inmunohistoquímica , Neoplasias Pulmonares/mortalidad , Masculino , Persona de Mediana Edad , Células Madre Neoplásicas , Fenotipo , Reacción en Cadena de la Polimerasa , Pronóstico
19.
Oncotarget ; 7(15): 20507-19, 2016 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-26840258

RESUMEN

Several studies have assessed the diagnostic and prognostic values of high mobility group protein box 1 (HMGB1) expression in non-small cell lung cancer (NSCLC), but these results remain controversial. The purpose of this study was to perform a meta-analysis of the gene microarray analyses of datasets from the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) to evaluate the association of HMGB1 expression with the clinicopathological and prognostic features of patients with NSCLC. Furthermore, we investigated the underlying molecular mechanisms by bioinformatics analysis. Twenty relevant articles involving 2651 patients were included in this meta-analysis; the HMGB1 expression in NSCLC tissues was significantly higher than that in the healthy non-cancer control tissues. We also found an indication by microarray analysis and meta-analysis that HMGB1 expression was associated with the cancer TNM Staging System. In terms of prognostic features, a survival analysis from KM-Plotter tool revealed that the high HMGB1 expression group exhibited poorer survival in lung adenocarcinoma (ADC) and overall NSCLC patients. The survival and disease-free analyses from TCGA datasets also showed that HMGB1 mainly affected the development of patients with ADC. Therefore, we focused on how HMGB1 affected the prognosis and development of ADC using bioinformatics analyses and detected that the mitogen-activated protein kinases (MAPK), apoptosis and cell cycle signaling pathways were the key pathways that varied during HMGB1 up-regulation in ADC. Moreover, various genes such as PLCG2, the phosphatidylinositol-4, 5-bisphosphate 3-kinase superfamily (PI3Ks), protein kinase C (PKC) and DGKZ were selected as hub genes in the gene regulatory network. Our results indicated that HMGB1 is a potential biomarker to predict progression and survival of NSCLC, especially of ADC types.


Asunto(s)
Adenocarcinoma/patología , Biomarcadores de Tumor/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Células Escamosas/patología , Proteína HMGB1/metabolismo , Neoplasias Pulmonares/patología , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Biomarcadores de Tumor/genética , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Estudios de Casos y Controles , Femenino , Estudios de Seguimiento , Regulación Neoplásica de la Expresión Génica , Proteína HMGB1/genética , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Masculino , Metaanálisis como Asunto , Persona de Mediana Edad , Pronóstico , Tasa de Supervivencia
20.
J Hematol Oncol ; 9: 10, 2016 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-26879872

RESUMEN

Cancer is currently one of the leading causes of death worldwide and is one of the most challenging major public health problems. The main challenges faced by clinicians in the management and treatment of cancer mainly arise from difficulties in early diagnosis and the emergence of tumor chemoresistance and metastasis. The structures of chemokine receptor 9 (CCR9) and its specific ligand chemokine ligand 25 (CCL25) have been elucidated, and, interestingly, a number of studies have demonstrated that CCR9 is a potential tumor biomarker in diagnosis and therapy, as it has been found to be highly expressed in a wide range of cancers. This expression pattern suggests that CCR9 may participate in many important biological activities involved in cancer progression. Researchers have shown that CCR9 that has been activated by its specific ligand CCL25 can interact with many signaling pathways, especially those involved in tumor chemoresistance and metastasis. This review, therefore, focuses on CCR9 induction activity and summarizes what is currently known regarding its role in cancers and its potential application in tumor-targeted therapy.


Asunto(s)
Quimiocinas CC/metabolismo , Neoplasias/metabolismo , Receptores CCR/metabolismo , Transducción de Señal , Antineoplásicos/uso terapéutico , Resistencia a Antineoplásicos , Humanos , Modelos Biológicos , Terapia Molecular Dirigida/métodos , Metástasis de la Neoplasia , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Receptores CCR/antagonistas & inhibidores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA