Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Molecules ; 29(2)2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38257246

RESUMEN

Although the impacts of plastic pollution have long been recognized, the presence, pervasiveness, and ecotoxicological consequences of microplastic-i.e., plastic particles < 5 mm-contamination have only been explored over the last decade. Far less focus has been attributed to the role of these materials and, particularly, microplastics, as vectors for a multitude of chemicals, including those (un)intentionally added to plastic products, but also organic pollutants already present in the environment. Owing to the ubiquitous presence of microplastics in all environmental matrices and to the diverse nature of their chemical and physical characteristics, thoroughly understanding the mechanistic uptake/release of these compounds is inherently complex, but necessary in order to better assess the potential impacts of both microplastics and associated chemicals on the environment. Herein, we delve into the known processes and factors affecting these mechanisms. We center the discussion on microplastics and discuss some of the most prominent ecological implications of the sorption of this multitude of chemicals. Moreover, the key limitations of the currently available literature are described and a prospective outlook for the future research on the topic is presented.

2.
Molecules ; 28(15)2023 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-37570680

RESUMEN

Sustainable development is a big global challenge for the 21st century. In recent years, a class of emerging contaminants known as microplastics (MPs) has been identified as a significant pollutant with the potential to harm ecosystems. These small plastic particles have been found in every compartment of the planet, with aquatic habitats serving as the ultimate sink. The challenge to extract MPs from different environmental matrices is a tangible and imperative issue. One of the primary specialties of research in environmental chemistry is the development of simple, rapid, low-cost, sensitive, and selective analytical methods for the extraction and identification of MPs in the environment. The present review describes the developments in MP extraction methods from complex environmental matrices. All existing methodologies (new, old, and proof-of-concept) are discussed and evaluated for their potential usefulness to extract MPs from various biotic and abiotic matrices for the sake of progress and innovation. This study concludes by addressing the current challenges and outlining future research objectives aimed at combating MP pollution. Additionally, a set of recommendations is provided to assist researchers in selecting appropriate analytical techniques for obtaining accurate results. To facilitate this process, a proposed roadmap for MP extraction is presented, considering the specific environmental compartments under investigation. By following this roadmap, researchers can enhance their understanding of MP pollution and contribute to effective mitigation strategies.

3.
J Environ Manage ; 302(Pt B): 114115, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34800773

RESUMEN

Waterworks which utilise river bank filtration water sources often have to apply aeration and sand filtration to remove iron and manganese during the drinking water treatment process. After some time, the sand becomes saturated and the spent filter sand (SFS) must be disposed of and replaced. In order to valorize this waste stream, this paper investigates the reuse of SFS as an adsorbent for the treatment of arsenic contaminated drinking water. The arsenic removal performance of SFS is compared with two synthetic iron oxide coated sands (IOCS). The sorbents were first characterized by SEM, EDS, BET specific surface area, and point of zero charge (pHpzc) measurements, and then investigated under a variety of conditions. The surface of the SFS was revealed to be coated with iron manganese binary oxide. The Freundlich model best described the isotherm experiment data, indicating a non monolayer adsorption model for arsenic adsorption on the three IOCS investigated. As(III) and As(V) removals were negatively effected by the presence of PO43- and HA anions as they competed with the arsenic species for adsorption sites. However, given the status of SFS as a waste material, the results obtained in this paper suggest it may be successfully reused as a very economically and environmentally sustainable solution for small waterworks requiring both As(V) and As(III) removal during drinking water treatment.


Asunto(s)
Arsénico , Agua Potable , Contaminantes Químicos del Agua , Arsénico/análisis , Hierro , Manganeso , Arena , Contaminantes Químicos del Agua/análisis
4.
J Environ Sci (China) ; 98: 134-142, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33097144

RESUMEN

The characteristics of the Danube river alluvial sediment are of great importance in assessing the risk for transport of pollutants to drinking water sources. Characterization of the sediment column layers has shown that the alluvial sediment, sampled near the city of Novi Sad, is a mesoporous sandy material with certain differences in the properties of individual layers. In order to investigate the sorption mechanisms of four chlorinated phenols (CPs) on the alluvial deposit, static sorption experiments were performed at pH 4, 7 and 10. The results of sorption experiments, confirmed by principal components analysis sugest different mechanisms govern the sorption process at different pH conditions. This can be attributed to the molecular characteristics of CPs, geosorbent properties and to variations in the surface charge of the sorbent at different pH conditions.


Asunto(s)
Sedimentos Geológicos , Fenoles , Adsorción , Ciudades , Ríos
5.
Artículo en Inglés | MEDLINE | ID: mdl-30688160

RESUMEN

Granular activated carbon (GAC) was modified with Fe-Mn binary oxide to produce a novel effective hybrid adsorbent (GAC-FeMn) for simultaneous removal of As(III) and As(V) from water. After characterization (including BET, SEM/EDS and XRD analyses) of the raw and modified GAC, FTIR analysis before and after As removal showed that ligand exchange was the major mechanism for As removal on GAC-FeMn. Sorption kinetics followed pseudo-second order kinetics for both As(III) and As(V) and were not controlled by intraparticle diffusion. Batch equilibrium experiments yielded adsorption capacities for As(III) and As(V) of 2.87 and 2.30 mg/g, and demonstrated that better sorption was achieved at low pH. Of the competitive anions investigated (PO43-, SiO32-, CO32-, SO42-, NO3-, Cl-), phosphate had the greatest negative effect on As(III) and As(V) adsorption. Three sorption/desorption cycles were conducted in continuous column tests with a real arsenic contaminated groundwater, with subsequent TCLP leaching tests confirming the stability of the spent sorbent. In the column tests, breakthrough curves were also obtained for phosphates, which were present at a relatively high concentration (1.33 mg/L) in the investigated groundwater. The phosphates limited the effective operational bed life of GAC-FeMn for arsenic removal. Nonetheless, the maximum arsenic adsorption capacities for GAC-FeMn obtained by the Thomas model during the three sorption cycles were high, ranging from 18.8 to 29.8 mg/g, demonstrating that even under high phosphate loads, with further process improvements, GAC-FeMn may provide an excellent solution for the economic removal of arsenic from real groundwaters.


Asunto(s)
Arsénico/análisis , Carbón Orgánico/química , Hierro/química , Manganeso/química , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodos , Adsorción , Agua Subterránea/química , Concentración de Iones de Hidrógeno , Cinética , Óxidos/química , Fosfatos/análisis
6.
J Appl Toxicol ; 38(6): 879-887, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29435998

RESUMEN

Humans are exposed not only to single endocrine disruptors, but also to chemical mixtures that can adversely affect their reproductive health. Steroidogenesis in reproductive tissues is emerging as the key target of endocrine disruptor action. Here, we analyzed the effect of environmental chemical mixtures with estrogenic activity on steroidogenic processes in immature rat granulosa cells and whether the observed steroidogenic effects were mediated through estrogen receptors. Extracts from untreated wastewater were prepared by solid-phase extraction and silica gel fractionation. ER-CALUX assay showed that the polar fractions of wastewater exerted different levels of estrogenic activity. Exposure of immature granulosa cells to the polar fraction exerting 9 ng of 17ß-estradiol equivalents per liter of water of estrogenic activity increased mRNA expression of the key enzymes of progesterone biosynthetic pathway Star and Hsd3b1, but did not alter the level of Cyp19a1 and Lhr. Addition of estrogen receptor inhibitor ICI 182 780 prevented the estrogenic mixture-induced increase in Hsd3b1, but not Star mRNA level in immature granulosa cells. These results indicate that the environmental chemical mixtures with estrogenic activity exert endocrine disrupting effects by augmenting the progesterone biosynthetic pathway in immature rat granulosa cells, which is an effect achieved in part through activation of the estrogen receptors.


Asunto(s)
Disruptores Endocrinos/toxicidad , Contaminantes Ambientales/toxicidad , Estrógenos/toxicidad , Células de la Granulosa/efectos de los fármacos , Complejos Multienzimáticos/metabolismo , Progesterona Reductasa/metabolismo , Progesterona/biosíntesis , Esteroide Isomerasas/metabolismo , Aguas Residuales/química , Contaminantes Químicos del Agua/toxicidad , Animales , Células Cultivadas , Disruptores Endocrinos/aislamiento & purificación , Contaminantes Ambientales/aislamiento & purificación , Inducción Enzimática , Estrógenos/aislamiento & purificación , Femenino , Células de la Granulosa/enzimología , Fosfoproteínas/biosíntesis , Fosfoproteínas/genética , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Ratas Wistar , Receptores de Estrógenos/metabolismo , Contaminantes Químicos del Agua/aislamiento & purificación
7.
Ecotoxicol Environ Saf ; 127: 153-62, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26829069

RESUMEN

Absence of a municipal wastewater (WW) treatment plant results in the untreated WW discharge into the recipient. The present study investigated toxic effects and chemical composition of water extracts and fractions from untreated WW and recipient Danube River (DR). Samples were prepared by solid-phase extraction and silica gel fractionation and screened for EROD activity and cytotoxicity using aquatic models, comprising of fish liver cells (PLHC-1) and a model of the early development of zebrafish embryos, while rat (H4IIE) and human (HepG2) hepatoma cells served as mammalian models. Polar fraction caused cytotoxicity and increased the EROD activity in PLHC-1 cells, and increased mortality and developmental abnormalities in developing zebrafish embryos. In H4IIE, polar fraction induced inhibition of cell growth and increased EROD activity, whereas HepG2 exerted low or no response to the exposure. Non-polar and medium-polar fractions were ineffective. Tentative identification by GC/MS showed that WW is characterized by the hydrocarbons, alkylphenols, plasticizers, and a certain number of benzene derivatives and organic acids. In DR, smaller number of organic compounds was identified and toxicity was less pronounced than in WW treatments. The present study revealed the potent toxic effect of polar fraction of untreated WW, with biological responses varying in sensitivity across organisms. Obtained results confirmed that fraction- and species-specific toxicity should be considered when assessing health risk of environmental pollution.


Asunto(s)
Monitoreo del Ambiente/métodos , Ríos/química , Aguas Residuales , Contaminantes Químicos del Agua , Animales , Fraccionamiento Químico , Citocromo P-450 CYP1A1/metabolismo , Peces , Cromatografía de Gases y Espectrometría de Masas , Células Hep G2/efectos de los fármacos , Humanos , Hígado/citología , Ratas , Aguas del Alcantarillado/química , Extracción en Fase Sólida , Aguas Residuales/química , Aguas Residuales/toxicidad , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/toxicidad , Pez Cebra/fisiología
8.
J Environ Manage ; 118: 153-60, 2013 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-23428464

RESUMEN

Natural organic matter (NOM) in raw water can contribute in many ways to the poor quality of drinking water, including the formation of disinfection byproducts such as trihalomethanes (THM) and haloacetic acids (HAA) during disinfection. This paper investigates the role of individual NOM fractions on changes in THM and HAA formation during coagulation with iron chloride (FeCl3) and a combination of polyaluminium chloride and iron chloride (FeCl3/PACl). The dissolved organic carbon (DOC) in the raw water and after coagulation was fractionated into four fractions, based on their hydrophobicity. Fractionation showed that most of the DOC (68%) in the raw water comes from the fulvic acid fraction, yielding 41% of the total THM precursors and 21% of the total HAA precursors. Both coagulants remove the humic acid fraction, but result in different changes to the reactivity of the remaining NOM fractions towards THM and HAA formation, indicating that coagulation occurs by different pathways, depending upon the type of coagulant used. In particular, significant changes in the reactivities of the hydrophilic acidic and non-acidic fractions were observed.


Asunto(s)
Acetatos/química , Cloroacetatos/química , Sustancias Húmicas/análisis , Trihalometanos/química , Purificación del Agua , Hidróxido de Aluminio/química , Cromatografía , Agua Potable/química , Compuestos Ferrosos/química , Espectrofotometría Ultravioleta , Calidad del Agua
9.
Artículo en Inglés | MEDLINE | ID: mdl-23647111

RESUMEN

This study utilizes a combinatorial bio/chemical approach to assess the toxicological profiles of organic pollutants in water and sediment samples from two watercourses that are under significant anthropogenic pressure-the Krivaja and Jegricka rivers in Serbia. Sample preparation by solid-phase extraction and silica-gel fractionation followed by GC/MS analysis, allowed the tentative identification of a variety of non-target contaminants, divided into non-polar, medium-polar and polar fractions. The instrumental analysis revealed slightly different toxicological profiles for the water and sediment from both rivers, and confirmed the presence of various classes of organic contaminants, from non-polar hydrocarbons, to more polar compounds such as aldehydes, ketones and phenols. Polycyclic aromatic hydrocarbons and pesticides were identified, but below toxicologically relevant concentrations. The results of bioanalyses on H4IIE and PLHC-1 cells indicated that cytotoxic potential was pronounced in Jegricka water and sediment samples, and CYP1A inducing potential was observed in both Krivaja and Jegricka sediment samples, although they did not reflect high levels of contamination. Based on the overall data, the sediments of the Krivaja and Jegricka rivers are a more toxicologically relevant matrix than the water.


Asunto(s)
Sedimentos Geológicos/análisis , Ríos/química , Contaminantes Químicos del Agua/análisis , Bioensayo , Monitoreo del Ambiente , Cromatografía de Gases y Espectrometría de Masas , Hidrocarburos Policíclicos Aromáticos/análisis , Serbia , Extracción en Fase Sólida
10.
Environ Technol ; 43(8): 1163-1169, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32907502

RESUMEN

Combination of 'green' coagulation and powdered activated carbon adsorption was tested for removal of benzophenone (BP), benzophenone-3 (BP-3) and caffeine (CF) from treated municipal wastewater at realistic concentration levels (1-2 µg/L). At the same time it was tracked how the process affected effluent organic matter (EfOM) by measuring chemical oxygen demand (COD). Green coagulant was produced from dry common bean seed in laboratory. Combined coagulation-adsorption experiments were performed by applying different dosing sequences of process materials. Removal of hydrophobic BP and BP-3 by separate adsorption (from 79 to 98%) was not significantly hindered by the addition of the coagulant (activated carbon dose of 5 or 20 mg/L). However, in some cases negative effects were observed for hydrophilic caffeine, depending on the carbon dose, dosing sequence and presence of total suspended solids (TSS). Thus, when coagulant was firstly added into water without TSS before low activated carbon dose of 5 mg/L, caffeine removal dropped from 26% to 5%. Conversely, when TSS were present in the water sample, the removal of caffeine was not hindered under the same PAC dose and dosing sequence. The importance of the process optimisation related to removal of organic micropollutans of different hydrophilicity has been shown in this paper. Removal of around 30% of COD regardless of the dosing sequence was achieved.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Adsorción , Carbón Orgánico/química , Eliminación de Residuos Líquidos , Aguas Residuales/química , Contaminantes Químicos del Agua/análisis
11.
J Hazard Mater Adv ; 5: 100041, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36743854

RESUMEN

The COVID-19 anthropause has impacted human activities and behaviour, resulting in substantial environmental and ecological changes. It has assisted in restoring the ecological systems by improving, for instance, air and water quality and decreasing the anthropogenic pressure on wildlife and natural environments. Notwithstanding, such improvements recessed back, even to a greater extent, when considering increased medical waste, hazardous disinfectants and other chemical compounds, and plastic waste disposal or mismanagement. This work critically reviews the short- and long-term implications of measures against COVID-19 spreading, namely on human activities and different environmental compartments. Furthermore, this paper highlights strategies towards environmental restoration, as the recovery of the lost environment during COVID-19 lockdown suggests that the environmental degradation caused by humans can be reversible. Thus, we can no longer delay concerted international actions to address biodiversity, sustainable development, and health emergencies to ensure environmental resilience and equitable recovery.

12.
Environ Sci Pollut Res Int ; 28(42): 59416-59429, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33415621

RESUMEN

Microplastics are ubiquitous in aqueous media, and the importance of considering their impact on the behaviour of other compounds in water has often been highlighted. This work thus investigates the adsorption mechanism of six priority substances (as defined by European Union legislation: trichlorobenzenes (1,2,3-TeCB, 1,3,5-TeCB, 1,2,4-TeCB), pentachlorobenzene (PeCB), hexachlorobenzene (HeCB), and trifluralin (TFL)) on primary polyethylene (PE) microplastics (polyethylene standard and polyethylene microparticles isolated from two personal care products) in Danube river water and a synthetic matrix. The maximum adsorbed amounts of the compounds investigated on PEs ranged from 227 µg/g for 1,2,3-TeCB to 333 µg/g for TFL. Equilibrium data was analysed using five isotherm models, with the best fit being described by the Langmuir model and the Dubinin-Radushkevich model indicating chemisorption as the likely sorption mechanism. In general, the Langmuir model showed that the investigated compounds will be better adsorbed on PEs in real river water, with the exception of 1,3,5-TeCB on all studied PEs, where the model predicts better sorption in the synthetic matrix. Compound characteristics and the polymer properties were the most important factors affecting the sorption process, while a significant matrix effect was also observed on PE behaviour. The fact that polyethylene particles derived from personal care products showed greater adsorption capacities than virgin PE demonstrates the necessity of investigating real-world PE samples when assessing the potential impact of MPs in the environment.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Adsorción , Clorobencenos , Plásticos , Polietileno , Trifluralina , Contaminantes Químicos del Agua/análisis
13.
Environ Pollut ; 274: 116554, 2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33529891

RESUMEN

Plastic waste are introduced into the environment inevitably and their exposure in the environment causes deterioration in mechanical and physicochemical properties and leads to the formation of plastic fragments, which are considered as microplastics when their size is < 5 mm. In recent years, microplastic pollution has been reported in all kinds of environments worldwide and is considered a potential threat to the health of ecosystems and humans. However, knowledge on the environmental degradation of plastics and the formation of microplastics is still limited. In this review, potential hotspots for the accumulation of plastic waste were identified, major mechanisms and characterization methods of plastic degradation were summarized, and studies on the environmental degradation of plastics were evaluated. Future research works should further identify the key environmental parameters and properties of plastics affecting the degradation in order to predict the fate of plastics in different environments and facilitate the development of technologies for reducing plastic pollution. Formation and degradation of microplastics, including nanoplastics, should receive more research attention to assess their fate and ecological risks in the environment more comprehensively.


Asunto(s)
Plásticos , Contaminantes Químicos del Agua , Ecosistema , Monitoreo del Ambiente , Contaminación Ambiental , Humanos , Microplásticos , Contaminantes Químicos del Agua/análisis
14.
Environ Technol ; 42(16): 2527-2539, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31854235

RESUMEN

Arsenic contamination of drinking water sources is a widespread global problem. Of the As species commonly found in groundwater, As(III) is generally more mobile and toxic than As(V). In this work, magnetic nanoparticles (MNp) modified with Fe-Mn binary oxide (MNp-FeMn) were synthesized in order to develop a low cost adsorbent with high removal efficiency for both arsenic species which can be readily separated from water using a magnetic field. MNp-FeMn were characterized using different techniques including SEM/EDS, XRD and BET analysis. Adsorption of As(III) and As(V) on MNp-FeMn was studied as a function of initial arsenic concentration, contact time, pH, and coexisting anions. The BET specific surface area of MNp-FeMn was 109 m2/g and maghemite (γ-Fe2O3) was the dominant precipitated phase. The adsorption rate of As(III) and As(V) on MNp-FeMn was controlled by surface diffusion. FTIR analysis confirms that surface complexation through ligand exchange was the main mechanism for As(III) and As(V) removal on MNp-FeMn, with As(III) conversion to As(V) occurring on the adsorbent surface. The maximal adsorption capacity qmax of MNp for As(III) (26 mg/g) was significantly improved after modification with Fe-Mn binary oxide (56 mg/g), while qmax for As(V) was 51 and 54 mg/g, respectively. PO43-, SiO32- and CO32- reduced As(III) and As(V) uptake at higher concentrations. MNp-FeMn can be easily regenerated and reused with only a slight reduction in adsorption capacity. The high oxidation and sorption capacity of MNp-FeMn, magnetic properties and reusability, suggest this material is a highly promising adsorbent for treatment of arsenic contaminated groundwater.


Asunto(s)
Arsénico , Nanopartículas de Magnetita , Contaminantes Químicos del Agua , Purificación del Agua , Adsorción , Concentración de Iones de Hidrógeno , Cinética , Óxidos , Contaminantes Químicos del Agua/análisis
15.
Environ Technol ; 42(22): 3475-3486, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32075547

RESUMEN

This paper investigates the fate of natural organic matter (NOM) during the full-scale drinking water treatment plant supplied by Danube river bank filtration. After the recent reconstruction of the plant, special attention was devoted to the effects of ozone dose and granulated activated carbon (GAC) filtration on the formation and behaviour of oxidation by-products (carbonyl compounds and bromate), as well as carbonaceous and nitrogenous chlorination by-products. For the oxidation of aromatic NOM moieties that absorb light at UV254, a lower ozone dose (1.0 g O3/m3) is sufficient, whereas to achieve a measurable reduction (about 20%) of total organic carbon, an ozone dose of 1.5 g O3/m3 is required. The content of carbonyl compounds in the water after ozonation increases relative to the content before oxidation treatment, and is up to 12 times higher in the case of aldehydes and up to 2 times higher in the case of carboxylic acids. Seasonal variations, including changes in temperature and the amount of precipitation, were also shown to affect the content of organic matter in the raw water, with slight effects on the quality of the treated water. In the winter, the organic matter content is slightly higher, meaning their transformation products aldehydes and carboxylic acids, are also higher during the winter than the summer.


Asunto(s)
Agua Potable , Ozono , Contaminantes Químicos del Agua , Purificación del Agua , Desinfección , Contaminantes Químicos del Agua/análisis
16.
Sci Total Environ ; 765: 142764, 2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-33268257

RESUMEN

The presence of 48 emerging micropollutants was tested in influent and effluent from primary and secondary treatment at a municipal wastewater treatment plant (WWTP) in Serbia. Sixteen emerging micropollutants (active pharmaceutical ingredients, bisphenols, parabens and UV filters) had concentrations >LOQ (max. conc. 33.4 µg/L). The removal efficiency of primary treatment ranged from 2.0% - 96.0%. In the case of secondary treatment, except for ketoprofen (61.0%), diclofenac (62.6%) and carbamazepine (-20.0%), all other measured micropollutants had removal efficiency above 77.0%. Advanced non-oxidative lab-scale treatments were investigated. Powdered activated carbon (PAC) adsorption achieved removal efficiencies in the range 52.4-99.9%, novel coagulation with natural coagulant isolated from beans achieved removal efficiencies in range 3.2-99.9%, conventional coagulation with ferric chloride 3.12-96.4%, combined adsorption/coagulation 2.69-99.9% and combined PAC/ultrafiltration (PAC/UF) 60-99.9%. For most of the micropollutants, their removal efficiencies were similar to that reported in the literature. Novel natural coagulant showed significant potential compared to the conventional coagulant during a short episode of sub-optimal WWTP operation. When natural coagulant was applied as a part of an adsorption/coagulation hybrid process, there was no negative effect on PAC adsorption, while for conventional coagulant that was not always the case. Also, a structure property relationship (SPR) study revealed correlations between the removal efficiency of the majority of treatments applied and total polar surface area (TPSA) of the micropollutants.

17.
Environ Sci Pollut Res Int ; 28(42): 59165-59179, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32588311

RESUMEN

The presence of a large number of micropollutants in the environment, including priority and emerging substances, poses a significant risk to surface and groundwater quality. Among them, trichlorobenzenes are widely used in the syntheses of dyes, pesticides, solvents, and other chemicals and have been identified as priority pollutants by the European Water Framework Directive. The main goal of this study was to investigate the behavior of 1,2,3-trichlorobenzene (TCB) during the sulfate radical-based advanced oxidation processes (SR-AOPs) involving UV activation of persulfate or peroxymonosulfate (UV/S2O82- and UV/HSO5- processes). For this purpose, TCB was subjected to SR-AOPs in synthetic water matrices containing humic acids or hydrogencarbonate and natural water samples and a comparative evaluation of the degradation process was made. The toxicity of the oxidation by-products was also assessed. The evaluation of TCB degradation kinetics results using principal component analysis indicates that the efficacy of the SR-AOPs was highly dependent on the pH, initial oxidant concentration, UV fluence, and matrix characteristics. In natural waters, TCB degradation by the UV/S2O82- process proved to be most effective in acidic conditions (pH 5), while the UV/HSO5- process showed the highest efficacy in basic conditions (pH 9.5), achieving a maximum TCB degradations of 97-99%. The obtained results indicate that UV/S2O82- and UV/HSO5- as new generation oxidation processes have significant potential for TCB removal from water and result in only minor toxicity after treatment (14-23% of Vibrio fischeri bioluminescence inhibition).


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Clorobencenos , Peróxido de Hidrógeno , Oxidación-Reducción , Peróxidos , Sulfatos , Rayos Ultravioleta , Agua , Contaminantes Químicos del Agua/análisis
18.
Water Sci Technol ; 61(12): 3169-77, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20555214

RESUMEN

In the central Banat region (Northern Serbia), groundwater is used as a drinking water source. Raw water originates from a 40-80 m and 100-150 m deep layer. It contains a high amount of natural organic matter (DOC = 9.17+/-0.87 mg C/L) with a trihalomethanes formation potential of 448+/-88.2 microg/L and a haloacetic acid formation potential of 174+/-68.9 microg/L. A high amount of arsenic (86.0+/-3.4 microg/L) is also found in this water. This study used a pilot-scale system to investigate the possibilities of combining polyaluminium chloride and ferrous-chloride to remove disinfection by-products precursors and arsenic by coagulation. Two treatment trains with different pre-treatment steps were investigated (ozone vs. H2O2/O3). For the final water polishing, filtration with granulated activated carbon (GAC) was applied. Both investigated treatment lines achieved a satisfactory chemical water quality. Simulation of disinfection conditions was performed and the contents of trihalomethanes and haloacetic acids measured, to investigate whether the chemical quality of the water remained satisfactory over a 48 hour period.


Asunto(s)
Arsénico/aislamiento & purificación , Transportes/normas , Abastecimiento de Agua/normas , Cloruro de Aluminio , Compuestos de Aluminio , Cloruros , Filtración/métodos , Floculación , Nefelometría y Turbidimetría , Ozono/análisis , Proyectos Piloto , Serbia
19.
Artículo en Inglés | MEDLINE | ID: mdl-20390878

RESUMEN

This paper presents a comparison of the efficacy of three different coagulants (polyaluminium chloride (PACl), Aluminium sulphate (Al(2)(SO(4))(3)) and ferrous chloride (FeCl(3))) for natural organic matter and arsenic (As) removal from groundwater. Coagulation efficacy was evaluated for the coagulants alone and for combinations of them (PACl/FeCl(3); Al(2)(SO(4))(3)/FeCl(3)), on the basis of changes in dissolved organic matter (DOC) and arsenic content. For single coagulants, PACl (30 mg Al/L) showed optimal efficacy for DOC removal (57%, relative to raw water). The highest arsenic reduction (< 5 microg As/L in coagulated water) was achieved when a very high 300 mg/L dose of FeCl(3) was used. However, if PACl (30 mg Al/L) and FeCl(3) (10 mg FeCl(3)/L) are combined, the efficacy of DOC removal increases compared to PACl and FeCl(3) alone under similar doses (66% decrease in DOC relative to raw water). The DOC and As contents of the coagulated water after application of these doses were 2.26 mg C/L and 9.7 microg/L, respectively, compared to 6.44 mg C/L and 60.5 microg As/L measured in the raw groundwater. The combination of Al(2)(SO(4))(3) and FeCl(3) did not show any improvement in DOC and As removal efficacy relative to using those coagulants alone.


Asunto(s)
Compuestos de Alumbre/química , Arsénico/química , Compuestos Férricos/química , Sales (Química)/química , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/aislamiento & purificación , Purificación del Agua/métodos , Hidróxido de Aluminio/química , Arsénico/aislamiento & purificación , Compuestos Ferrosos/química , Serbia
20.
J Hazard Mater ; 393: 122490, 2020 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-32197201

RESUMEN

In this work, we have investigated the stability of pindolol (PIN), a non-selective ß1-blocker detected in the river and wastewater of hospitals, in water solution under solar irradiation. Further, detailed insights into the stability of PIN were obtained by the density functional theory (DFT) calculations and molecular dynamics simulations. The kinetics of PIN photocatalytic degradation and mineralization has been studied using four commercial photocatalysts ZnO and TiO2 (P25, Hombikat, and Wackherr). It was found that the major role in degradation of PIN play the reactive hydroxyl radicals. The structures of degradation intermediates were suggested by LC-ESI-MS/MS and DFT calculations. Also, DFT calculations were used to refine molecular structures of intermediates and obtain their geometries. Toxicity of PIN and its mixtures formed during photocatalytic degradation were investigated using mammalian cell lines (H-4-II-E, HT-29, and MRC-5). The H-4-II-E cell line was the most sensitive to PIN and its photodegradation mixtures. The computational results were combined with the experimental data on the amounts of degradation intermediates for determination of the intermediates that were principally responsible for the toxicity. Intermediate with two hydroxyl groups, positioned on indole ring in meta and para positions, was proposed as the one with the highest contribution to toxicity.


Asunto(s)
Pindolol/química , Luz Solar , Titanio/efectos de la radiación , Contaminantes Químicos del Agua/química , Óxido de Zinc/efectos de la radiación , Animales , Catálisis , Línea Celular , Humanos , Cinética , Modelos Moleculares , Fotólisis , Pindolol/toxicidad , Ratas , Titanio/química , Contaminantes Químicos del Agua/toxicidad , Óxido de Zinc/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA