Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
BMC Plant Biol ; 23(1): 397, 2023 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-37596537

RESUMEN

Agricultural production is severely limited by an iron deficiency. Alkaline soils increase iron deficiency in rice crops, consequently leading to nutrient deficiencies in humans. Adding iron to rice enhances both its elemental composition and the nutritional value it offers humans through the food chain. The purpose of the current pot experiment was to investigate the impact of Fe treatment in alkaline (pH 7.5) and acidic (pH 5.5) soils to introduce iron-rich rice. Iron was applied to the plants in the soil in the form of an aqueous solution of FeSO4 with five different concentrations (100, 200, 300, 400, and 500 mM). The results obtained from the current study demonstrated a significant increase in Fe content in Oryza sativa with the application of iron in both alkaline and acidic pH soils. Specifically, Basmati-515, one of the rice cultivars tested, exhibited a notable 13% increase in iron total accumulation per plant and an 11% increase in root-to-shoot ratio in acidic soil. In contrast to Basmati-198, which demonstrated maximum response in alkaline soil, Basmati-515 exhibited notable increases in all parameters, including a 31% increase in dry weight, 16% increase in total chlorophyll content, an 11% increase in CAT (catalase) activity, 7% increase in APX (ascorbate peroxidase) activity, 26% increase in POD (peroxidase) activity, and a remarkable 92% increase in SOD (superoxide dismutase) in acidic soil. In alkaline soil, Basmati-198 exhibited respective decreases of 40% and 39% in MDA and H2O2 content, whereas Basmati-515 demonstrated a more significant decrease of 50% and 67% in MDA and H2O2 in acidic soil. These results emphasize the potential for targeted soil management strategies to improve iron nutrition and address iron deficiency in agricultural systems. By considering soil conditions, it is possible to enhance iron content and promote its availability in alkaline and acidic soils, ultimately contributing to improved crop nutrition and human health.


Asunto(s)
Deficiencias de Hierro , Oryza , Humanos , Suelo , Peróxido de Hidrógeno , Hierro
2.
Funct Integr Genomics ; 16(3): 221-33, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26141043

RESUMEN

MicroRNAs (miRNAs) are a class of small non-coding regulatory RNAs that regulate gene expression by guiding target mRNA cleavage or translational inhibition. Drought is a common environmental stress influencing crop growth and development. To date, it has been reported that a number of plant miRNA are involved in drought stress response. In this study, we comparatively investigated drought stress-responsive miRNAs in the root and leaf of bread wheat (Triticum aestivum cv. Sivas 111/33) by miRNA microarray screening. miRNA microarray analysis showed that 285 miRNAs (207 upregulated and 78 downregulated) and 244 miRNAs (115 upregulated and 129 downregulated) were differentially expressed in leaf and root tissues, respectively. Among the differentially expressed miRNAs, 23 miRNAs were only expressed in the leaf and 26 miRNAs were only expressed in the root of wheat growth under drought stress. Upon drought treatment, expression of miR159, miR160, miR166, miR169, miR172, miR395, miR396, miR408, miR472, miR477, miR482, miR1858, miR2118, and miR5049 were found to be significantly differentiated in bread wheat. The regulatory network analysis showed that miR395 has connections with a number of target transcripts, and miR159 and miR319 share a number of target genes. Drought-tolerant and drought-sensitive wheat cultivars showed altered expression pattern upon drought stress in terms of investigated miRNA and their target transcript expression level.


Asunto(s)
Sequías , MicroARNs/genética , Estrés Fisiológico/genética , Triticum/genética , Regulación de la Expresión Génica de las Plantas , MicroARNs/biosíntesis , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Triticum/crecimiento & desarrollo
3.
ACS Omega ; 8(39): 35746-35754, 2023 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-37810661

RESUMEN

Drought is a prime stress, drastically affecting plant growth, development, and yield. Plants have evolved various physiological, molecular, and biochemical mechanisms to cope with drought. Investigating specific biochemical pathways related to drought tolerance mechanisms of plants through biotechnology approaches is one of the quickest and most effective strategies for enhancing crop production. Among them, microRNAs (miRNAs) are the principal post-transcriptional regulators of gene expression in plants during plant growth under biotic and abiotic stresses. In this study, five different chickpea genotypes (Inci, Hasan bey, Arda, Seçkin, and Diyar 95) were grown under normal and drought stress. We recorded the expression levels of microRNAs in these genotypes and found differential expression (miRNA396, miR408, miRNA414, miRNA528, and miRNA1533) under contrasting conditions. Results revealed that miRNA414 and miRNA528 considerably increased in all genotypes under drought stress, and expression levels of miRNA418, miRNA1533, and miRNA396 (except for the Seçkin genotype) were found to be higher under the watered conditions. These genotypes were also investigated for heavy metal, phenolic acid, protein, and nitrogen concentrations under normal and drought stress conditions. The Arda genotype showed a significant increase in nitrogen (5.46%) and protein contents (28.3%), while protein contents were decreased in the Hasan bey and Seçkin genotypes subjected to drought stress. In the case of metals, iron was the most abundant element in all genotypes (Inci = 15.4 ppm, Hasan bey = 29.6 ppm, Seçkin = 37.8 ppm, Arda = 26.3 ppm, and Diyar 95 = 40.8 ppm) under normal conditions. Interestingly, these results were related to miRNA expression in the chickpea genotypes and hint at the regulation of multiple pathways under drought conditions. Overall, the present study will help us to understand the miRNA-mediated regulation of various pathways in chickpea genotypes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA