Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Cell Stem Cell ; 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38917807

RESUMEN

Clonal hematopoiesis (CH) arises when hematopoietic stem cells (HSCs) acquire mutations, most frequently in the DNMT3A and TET2 genes, conferring a competitive advantage through mechanisms that remain unclear. To gain insight into how CH mutations enable gradual clonal expansion, we used single-cell multi-omics with high-fidelity genotyping on human CH bone marrow (BM) samples. Most of the selective advantage of mutant cells occurs within HSCs. DNMT3A- and TET2-mutant clones expand further in early progenitors, while TET2 mutations accelerate myeloid maturation in a dose-dependent manner. Unexpectedly, both mutant and non-mutant HSCs from CH samples are enriched for inflammatory and aging transcriptomic signatures, compared with HSCs from non-CH samples, revealing a non-cell-autonomous effect. However, DNMT3A- and TET2-mutant HSCs have an attenuated inflammatory response relative to wild-type HSCs within the same sample. Our data support a model whereby CH clones are gradually selected because they are resistant to the deleterious impact of inflammation and aging.

2.
Hemasphere ; 7(6): e914, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37304938

RESUMEN

Acute myeloid leukemia (AML) is the most aggressive adult leukemia, characterized by clonal differentiation arrest of progenitor or precursor hematopoietic cells. Intense preclinical and clinical research has led to regulatory approval of several targeted therapeutics, administered either as single agents or as combination therapies. However, the majority of patients still face a poor prognosis and disease relapse frequently occurs due to selection of therapy-resistant clones. Hence, more effective novel therapies, most likely as innovative, rational combination therapies, are urgently needed. Chromosomal aberrations, gene mutations, and epigenetic alterations drive AML pathogenesis but concurrently provide vulnerabilities to specifically target leukemic cells. Other molecules, either aberrantly active and/or overexpressed in leukemic stem cells, may also be leveraged for therapeutic benefit. This concise review of targeted therapies for AML treatment, which are either approved or are being actively investigated in clinical trials or recent preclinical studies, provides a flavor of the direction of travel, but also highlights the current challenges in AML treatment.

3.
STAR Protoc ; 4(4): 102641, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37897733

RESUMEN

Single-cell assay for transposase-accessible chromatin with sequencing (scATAC-seq) resolves the heterogeneity of epigenetic states across cells but does not typically capture exonic mutations, which limits our knowledge of how somatic mutations alter chromatin landscapes. Here, we present a plate-based approach coupling high-sensitivity genotyping of genomic loci with high-content scATAC-seq libraries from the same single cells. We first describe steps for optimization of genotyping primers, followed by detailed guidance on the preparation of both scATAC-seq and single-cell genotyping libraries, fully automated on high-throughput liquid handling platforms. For complete details on the use and execution of this protocol, please refer to Turkalj, Jakobsen et al.1.


Asunto(s)
Bioensayo , Cromatina , Cromatina/genética , Genotipo , Cartilla de ADN , Epigenómica
4.
Cell Stem Cell ; 30(5): 722-740.e11, 2023 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-37146586

RESUMEN

Understanding clonal evolution and cancer development requires experimental approaches for characterizing the consequences of somatic mutations on gene regulation. However, no methods currently exist that efficiently link high-content chromatin accessibility with high-confidence genotyping in single cells. To address this, we developed Genotyping with the Assay for Transposase-Accessible Chromatin (GTAC), enabling accurate mutation detection at multiple amplified loci, coupled with robust chromatin accessibility readout. We applied GTAC to primary acute myeloid leukemia, obtaining high-quality chromatin accessibility profiles and clonal identities for multiple mutations in 88% of cells. We traced chromatin variation throughout clonal evolution, showing the restriction of different clones to distinct differentiation stages. Furthermore, we identified switches in transcription factor motif accessibility associated with a specific combination of driver mutations, which biased transformed progenitors toward a leukemia stem cell-like chromatin state. GTAC is a powerful tool to study clonal heterogeneity across a wide spectrum of pre-malignant and neoplastic conditions.


Asunto(s)
Cromatina , Leucemia Mieloide Aguda , Humanos , Transposasas/genética , Transposasas/metabolismo , Genotipo , Genómica , Regulación de la Expresión Génica
5.
Blood Cancer Discov ; 4(4): 276-293, 2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-37102976

RESUMEN

The safety and efficacy of combining the isocitrate dehydrogenase-1 (IDH1) inhibitor ivosidenib (IVO) with the BCL2 inhibitor venetoclax (VEN; IVO + VEN) ± azacitidine (AZA; IVO + VEN + AZA) were evaluated in four cohorts of patients with IDH1-mutated myeloid malignancies (n = 31). Most (91%) adverse events were grade 1 or 2. The maximal tolerated dose was not reached. Composite complete remission with IVO + VEN + AZA versus IVO + VEN was 90% versus 83%. Among measurable residual disease (MRD)-evaluable patients (N = 16), 63% attained MRD--negative remissions; IDH1 mutation clearance occurred in 64% of patients receiving ≥5 treatment cycles (N = 14). Median event-free survival and overall survival were 36 [94% CI, 23-not reached (NR)] and 42 (95% CI, 42-NR) months. Patients with signaling gene mutations appeared to particularly benefit from the triplet regimen. Longitudinal single-cell proteogenomic analyses linked cooccurring mutations, antiapoptotic protein expression, and cell maturation to therapeutic sensitivity of IDH1-mutated clones. No IDH isoform switching or second-site IDH1 mutations were observed, indicating combination therapy may overcome established resistance pathways to single-agent IVO. SIGNIFICANCE: IVO + VEN + AZA is safe and active in patients with IDH1-mutated myeloid malignancies. Combination therapy appears to overcome resistance mechanisms observed with single-agent IDH-inhibitor use, with high MRD-negative remission rates. Single-cell DNA ± protein and time-of-flight mass-cytometry analysis revealed complex resistance mechanisms at relapse, highlighting key pathways for future therapeutic intervention. This article is highlighted in the In This Issue feature, p. 247.


Asunto(s)
Antineoplásicos , Recurrencia Local de Neoplasia , Humanos , Recurrencia Local de Neoplasia/inducido químicamente , Antineoplásicos/efectos adversos , Azacitidina/efectos adversos , Isocitrato Deshidrogenasa/genética
6.
Cancers (Basel) ; 12(6)2020 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-32481736

RESUMEN

The B cell receptor (BCR) pathway has been identified as a potential therapeutic target in a number of common B cell malignancies, including chronic lymphocytic leukemia, diffuse large B cell lymphoma, Burkitt lymphoma, follicular lymphoma, mantle cell lymphoma, marginal zone B cell lymphoma, and Waldenstrom's macroglobulinemia. This finding has resulted in the development of numerous drugs that target this pathway, including various inhibitors of the kinases BTK, PI3K, and SYK. Several of these drugs have been approved in recent years for clinical use, resulting in a profound change in the way these diseases are currently being treated. However, the response rates and durability of responses vary largely across the different disease entities, suggesting a different proportion of patients with an activated BCR pathway and different mechanisms of BCR pathway activation. Indeed, several antigen-dependent and antigen-independent mechanisms have recently been described and shown to result in the activation of distinct downstream signaling pathways. The purpose of this review is to provide an overview of the mechanisms responsible for the activation of the BCR pathway in different B cell malignancies and to correlate these mechanisms with clinical responses to treatment with BCR inhibitors.

7.
Leukemia ; 33(10): 2416-2428, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-30872780

RESUMEN

The BCL-2 inhibitor venetoclax has only limited activity in DLBCL despite frequent BCL-2 overexpression. Since constitutive activation of the B cell receptor (BCR) pathway has been reported in both ABC and GCB DLBCL, we investigated whether targeting SYK or BTK will increase sensitivity of DLBCL cells to venetoclax. We report that pharmacological inhibition of SYK or BTK synergistically enhances venetoclax sensitivity in BCL-2-positive DLBCL cell lines with an activated BCR pathway in vitro and in a xenograft model in vivo, despite the only modest direct cytotoxic effect. We further show that these sensitizing effects are associated with inhibition of the downstream PI3K/AKT pathway and changes in the expression of MCL-1, BIM, and HRK. In addition, we show that BCR-dependent GCB DLBCL cells are characterized by deficiency of the phosphatase SHP1, a key negative regulator of the BCR pathway. Re-expression of SHP1 in GCB DBLCL cells reduces SYK, BLNK, and GSK3 phosphorylation and induces corresponding changes in MCL1, BIM, and HRK expression. Together, these findings suggest that SHP1 deficiency is responsible for the constitutive activation of the BCR pathway in GCB DLBCL and identify SHP1 and BCL-2 as potential predictive markers for response to treatment with a venetoclax/BCR inhibitor combination.


Asunto(s)
Agammaglobulinemia Tirosina Quinasa/metabolismo , Antineoplásicos/farmacología , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Linfoma de Células B Grandes Difuso/tratamiento farmacológico , Proteína Tirosina Fosfatasa no Receptora Tipo 6/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Sulfonamidas/farmacología , Quinasa Syk/metabolismo , Animales , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Femenino , Humanos , Linfoma de Células B Grandes Difuso/metabolismo , Ratones , Ratones Endogámicos NOD , Ratones SCID , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA