Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Fluids Eng ; 144(6)2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35673360

RESUMEN

Understanding particle detachment from surfaces is necessary to better characterize dust generation and entrainment. Previous work has studied the detachment of particles from flat surfaces. The present work generalizes this to investigate the aerodynamics of a particle attached to various locations on a model hill. The present work serves as a model for dust aerosolization in a tube, as powder is injected into the Venturi Dustiness Tester. The particle is represented as a sphere in a parallel plate channel, or, in two dimensions, as a cylinder oriented perpendicular to the flow. The substrate is modified to include a conical hill (3D) or wedge (2D), and the test particle is located at various positions on this hill. The governing incompressible Navier-Stokes equations are solved using the finite-volume FLUENT code. The coefficients of lift and drag are compared with the results on the flat substrate. Enhanced drag and significantly enhanced lift are observed as the test particle is situated near the summit of the hill.

2.
Biochim Biophys Acta Gen Subj ; 1861(2): 58-67, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27784615

RESUMEN

BACKGROUND: In the lung, macrophages attempt to engulf inhaled high aspect ratio pathogenic materials, secreting inflammatory molecules in the process. The inability of macrophages to remove these materials leads to chronic inflammation and disease. How the biophysical and biochemical mechanisms of these effects are influenced by fiber length remains undetermined. This study evaluates the role of fiber length on phagocytosis and molecular inflammatory responses to non-cytotoxic fibers, enabling development of quantitative length-based models. METHODS: Murine alveolar macrophages were exposed to short and long populations of JM-100 glass fibers, produced by successive sedimentation and repeated crushing, respectively. Interactions between fibers and macrophages were observed using time-lapse video microscopy, and quantified by flow cytometry. Inflammatory biomolecules (TNF-α, IL-1α, COX-2, PGE2) were measured. RESULTS: Uptake of short fibers occurred more readily than for long, but long fibers were more potent stimulators of inflammatory molecules. Stimulation resulted in dose-dependent secretion of inflammatory biomolecules but no cytotoxicity or strong ROS production. Linear cytokine dose-response curves evaluated with length-dependent potency models, using measured fiber length distributions, resulted in identification of critical fiber lengths that cause frustrated phagocytosis and increased inflammatory biomolecule production. CONCLUSION: Short fibers played a minor role in the inflammatory response compared to long fibers. The critical lengths at which frustrated phagocytosis occurs can be quantified by fitting dose-response curves to fiber distribution data. GENERAL SIGNIFICANCE: The single physical parameter of length can be used to directly assess the contributions of length against other physicochemical fiber properties to disease endpoints.


Asunto(s)
Vidrio/química , Inflamación/patología , Macrófagos Alveolares/patología , Fagocitosis/fisiología , Animales , Células Cultivadas , Ciclooxigenasa 2/metabolismo , Dinoprostona/metabolismo , Estudios de Evaluación como Asunto , Inflamación/metabolismo , Interleucina-1alfa/metabolismo , Macrófagos/metabolismo , Macrófagos/patología , Macrófagos Alveolares/metabolismo , Ratones , Especies Reactivas de Oxígeno/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
3.
Powder Technol ; 312: 310-320, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28638167

RESUMEN

Dustiness quantifies the propensity of a finely divided solid to be aerosolized by a prescribed mechanical stimulus. Dustiness is relevant wherever powders are mixed, transferred or handled, and is important in the control of hazardous exposures and the prevention of dust explosions and product loss. Limited quantities of active pharmaceutical powders available for testing led to the development (at University of North Carolina) of a Venturi-driven dustiness tester. The powder is turbulently injected at high speed (Re ~ 2 × 104) into a glass chamber; the aerosol is then gently sampled (Re ~ 2 × 103) through two filters located at the top of the chamber; the dustiness index is the ratio of sampled to injected mass of powder. Injection is activated by suction at an Extraction Port at the top of the chamber; loss of powder during injection compromises the sampled dustiness. The present work analyzes the flow inside the Venturi Dustiness Tester, using an Unsteady Reynolds-Averaged Navier-Stokes formulation with the k-ω Shear Stress Transport turbulence model. The simulation considers single-phase flow, valid for small particles (Stokes number Stk <1). Results show that ~ 24% of fluid-tracers escape the tester before the Sampling Phase begins. Dispersion of the powder during the Injection Phase results in a uniform aerosol inside the tester, even for inhomogeneous injections, satisfying a necessary condition for the accurate evaluation of dustiness. Simulations are also performed under the conditions of reduced Extraction-Port flow; results confirm the importance of high Extraction-Port flow rate (standard operation) for uniform distribution of fluid tracers. Simulations are also performed under the conditions of delayed powder injection; results show that a uniform aerosol is still achieved provided 0.5 s elapses between powder injection and sampling.

4.
Combust Flame ; 167: 218-227, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-27468178

RESUMEN

There is a concern that engineered carbon nanoparticles, when manufactured on an industrial scale, will pose an explosion hazard. Explosion testing has been performed on 20 codes of carbonaceous powders. These include several different codes of SWCNTs (single-walled carbon nanotubes), MWCNTs (multi-walled carbon nanotubes) and CNFs (carbon nanofibers), graphene, diamond, fullerene, as well as several different control carbon blacks and graphites. Explosion screening was performed in a 20 L explosion chamber (ASTM E1226 protocol), at a concentration of 500 g/m3, using a 5 kJ ignition source. Time traces of overpressure were recorded. Samples typically exhibited overpressures of 5-7 bar, and deflagration index KSt = V1/3 (dP/dt)max ~ 10 - 80 bar-m/s, which places these materials in European Dust Explosion Class St-1. There is minimal variation between these different materials. The explosive characteristics of these carbonaceous powders are uncorrelated with primary particle size (BET specific surface area).

5.
Inhal Toxicol ; 26(2): 70-83, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24417374

RESUMEN

Fiber dimension (especially length) and biopersistence are thought to be important variables in determining the pathogenicity of asbestos and other elongate mineral particles. In order to prepare samples of fibers for toxicology studies, it is necessary to develop and evaluate methods for separating fibers by length in the micrometer size range. In this study, we have filtered an aerosol of fibers through nylon screens to investigate whether such screens can efficiently remove the long fibers (L >20 µm, a typical macrophage size) from the aerosol stream. Such a sample, deficient in long fibers, could then be used as the control in a toxicology study to investigate the role of length. A well-dispersed aerosol of glass fibers (a surrogate for asbestos) was generated by vortex shaking a Japan Fibrous Material Research Association (JFMRA) glass fiber powder. Fibers were collected on a mixed cellulose ester (MCE) filter, imaged with phase contrast microscopy (PCM) and lengths were measured. Length distributions of the fibers that penetrated through various screens (10, 20 and 60 µm mesh sizes) were analyzed; additional study was made of fibers that penetrated through double screen and centrally blocked screen configurations. Single screens were not particularly efficient in removing the long fibers; however, the alternative configurations, especially the centrally blocked screen configuration, yielded samples substantially free of the long fibers.


Asunto(s)
Aerosoles/química , Filtración/instrumentación , Filtración/métodos , Vidrio/química , Tamaño de la Partícula
6.
Ann Occup Hyg ; 57(2): 261-77, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23065675

RESUMEN

Dustiness may be defined as the propensity of a powder to form airborne dust by a prescribed mechanical stimulus; dustiness testing is typically intended to replicate mechanisms of dust generation encountered in workplaces. A novel dustiness testing device, developed for pharmaceutical application, was evaluated in the dustiness investigation of 27 fine and nanoscale powders. The device efficiently dispersed small (mg) quantities of a wide variety of fine and nanoscale powders, into a small sampling chamber. Measurements consisted of gravimetrically determined total and respirable dustiness. The following materials were studied: single and multiwalled carbon nanotubes, carbon nanofibers, and carbon blacks; fumed oxides of titanium, aluminum, silicon, and cerium; metallic nanoparticles (nickel, cobalt, manganese, and silver) silicon carbide, Arizona road dust; nanoclays; and lithium titanate. Both the total and respirable dustiness spanned two orders of magnitude (0.3-37.9% and 0.1-31.8% of the predispersed test powders, respectively). For many powders, a significant respirable dustiness was observed. For most powders studied, the respirable dustiness accounted for approximately one-third of the total dustiness. It is believed that this relationship holds for many fine and nanoscale test powders (i.e. those primarily selected for this study), but may not hold for coarse powders. Neither total nor respirable dustiness was found to be correlated with BET surface area, therefore dustiness is not determined by primary particle size. For a subset of test powders, aerodynamic particle size distributions by number were measured (with an electrical low-pressure impactor and an aerodynamic particle sizer). Particle size modes ranged from approximately 300 nm to several micrometers, but no modes below 100 nm, were observed. It is therefore unlikely that these materials would exhibit a substantial sub-100 nm particle contribution in a workplace.


Asunto(s)
Contaminantes Ocupacionales del Aire/análisis , Polvo/análisis , Nanopartículas/análisis , Polvos/análisis , Monitoreo del Ambiente/instrumentación , Humanos , Exposición por Inhalación/análisis , Exposición Profesional/análisis , Tamaño de la Partícula
7.
Particuology ; 72: 68-80, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37207251

RESUMEN

Potential exposure from hazardous dusts may be assessed by evaluating the dustiness of the powders being handled. Dustiness is the tendency of a powder to aerosolize with a given input of energy. We have previously used computational fluid dynamics (CFD) to numerically investigate the flow inside the European Standard (EN15051) Rotating Drum dustiness tester during its operation. The present work extends those CFD studies to the widely used Heubach Rotating Drum. Air flow characteristics are investigated within the Abe-Kondoh-Nagano k-epsilon turbulence model; the aerosol is incorporated via a Euler-Lagrangian multiphase approach. The air flow inside these drums consists of a well-defined axial jet penetrating relatively quiescent air. The spreading of the Heubach jet results in a fraction of the jet recirculating as back-flow along the drum walls; at high rotation rates, the axial jet becomes unstable. This flow behavior qualitatively differs from the stable EN15051 flow pattern. The aerodynamic instability promotes efficient mixing within the Heubach drum, resulting in higher particle capture efficiencies for particle sizes d < 80 µm.

9.
J Hazard Mater ; 295: 97-103, 2015 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-25913651

RESUMEN

Following a previous explosion screening study, we have conducted concentration and ignition energy scans on several carbonaceous nanopowders: fullerene, SWCNT, carbon black, MWCNT, graphene, CNF, and graphite. We have measured minimum explosive concentration (MEC), minimum ignition energy (MIE), and minimum ignition temperature (MITcloud) for these materials. The nanocarbons exhibit MEC ~10(1)-10(2) g/m(3), comparable to the MEC for coals and for fine particle carbon blacks and graphites. The nanocarbons are confirmed mainly to be in the St-1 explosion class, with fullerene, at K(St) ~200 bar-m/s, borderline St-1/St-2. We estimate MIE ~ 10(2)-10(3) J, an order of magnitude higher than the MIE for coals but an order of magnitude lower than the MIE for fine particle graphites. While the explosion severity of the nanocarbons is comparable to that of the coals, their explosion susceptibility (ease of ignition) is significantly less (i.e., the nanocarbons have higher MIEs than do the coals); by contrast, the nanocarbons exhibit similar explosion severity to the graphites but enhanced explosion susceptibility (i.e., the nanocarbons have lower MIEs than do the graphites). MIT(cloud) > 550 °C, comparable to that of the coals and carbon blacks.


Asunto(s)
Explosiones , Sustancias Peligrosas , Nanopartículas , Tamaño de la Partícula
10.
Aerosol Sci Technol ; 48(8): 896-905, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-26388662

RESUMEN

The Baron fiber classifier is an instrument used to separate fibers by length. The flow combination section (FCS) of this instrument is an upstream annular region, where an aerosol of uncharged fibers is introduced along with two sheath flows; length separation occurs by dielectrophoresis downstream in the flow classification section. In its current implementation at NIOSH, the instrument is capable of processing only very small quantities of fibers. In order to prepare large quantities of length-separated fibers for toxicological studies, the throughput of the instrument needs to be increased, and hence, higher aerosol flow rates need to be considered. However, higher aerosol flow rates may give rise to flow separation or vortex formation in the FCS, arising from the sudden expansion of the aerosol at the inlet nozzle. The goal of the present investigation is to understand the interaction of the sheath and aerosol flows inside the FCS, using computational fluid dynamics (CFD), and to identify possible limits to increasing aerosol flow rates. Numerical solutions are obtained using an axisymmetric model of the FCS, and solving the Navier-Stokes equations governing these flows; in this study, the aerosol flow is treated purely aerodynamically. Results of computations are presented for four different flow rates. The geometry of the converging outer cylinder, along with the two sheath flows, is effective in preventing vortex formation in the FCS for aerosol-to-sheath flow inlet velocity ratios below ~ 50. For higher aerosol flow rates, recirculation is observed in both inner and outer sheaths. Results for velocity, streamlines, and shear stress are presented.

11.
Aerosol Sci Technol ; 47(12): 1293-1301, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-26635428

RESUMEN

Generation of well-dispersed, well-characterized fibers is important in toxicology studies. A vortex-tube shaking method is investigated using glass fibers to characterize the generated aerosol. Controlling parameters that were studied included initial batch amounts of glass fibers, preparation of the powder (e.g., preshaking), humidity, and airflow rate. Total fiber number concentrations and aerodynamic size distributions were typically measured. The aerosol concentration is only stable for short times (t < 10 min) and then falls precipitously, with concomitant changes in the aerosol aerodynamic size distribution; the plateau concentration and its duration both increase with batch size. Preshaking enhances the initial aerosol concentration and enables the aerosolization of longer fibers. Higher humidity strongly affects the particle size distribution and the number concentration, resulting in a smaller modal diameter and a higher number concentration. Running the vortex shaker at higher flow rates (Q > 0.3 lpm), yields an aerosol with a particle size distribution representative of the batch powder; running the vortex shaker at a lower aerosol flow rate (Q ~ 0.1 lpm) only aerosolizes the shorter fibers. These results have implications for the use of the vortex shaker as a standard aerosol generator.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA