Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 192
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 181(2): 219-222, 2020 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-32302564

RESUMEN

Mounting evidence indicates that the nervous system plays a central role in cancer pathogenesis. In turn, cancers and cancer therapies can alter nervous system form and function. This Commentary seeks to describe the burgeoning field of "cancer neuroscience" and encourage multidisciplinary collaboration for the study of cancer-nervous system interactions.


Asunto(s)
Neoplasias/metabolismo , Sistema Nervioso/metabolismo , Humanos , Neurociencias
2.
Cell ; 170(5): 875-888.e20, 2017 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-28757253

RESUMEN

Pancreatic ductal adenocarcinoma (PDA) is one of the most lethal human malignancies, owing in part to its propensity for metastasis. Here, we used an organoid culture system to investigate how transcription and the enhancer landscape become altered during discrete stages of disease progression in a PDA mouse model. This approach revealed that the metastatic transition is accompanied by massive and recurrent alterations in enhancer activity. We implicate the pioneer factor FOXA1 as a driver of enhancer activation in this system, a mechanism that renders PDA cells more invasive and less anchorage-dependent for growth in vitro, as well as more metastatic in vivo. In this context, FOXA1-dependent enhancer reprogramming activates a transcriptional program of embryonic foregut endoderm. Collectively, our study implicates enhancer reprogramming, FOXA1 upregulation, and a retrograde developmental transition in PDA metastasis.


Asunto(s)
Adenocarcinoma/genética , Carcinoma Ductal Pancreático/genética , Elementos de Facilitación Genéticos , Regulación Neoplásica de la Expresión Génica , Factor Nuclear 3-alfa del Hepatocito/genética , Neoplasias Pancreáticas/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/patología , Animales , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Modelos Animales de Enfermedad , Epigenómica , Femenino , Perfilación de la Expresión Génica , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Metástasis de la Neoplasia , Organoides/metabolismo , Páncreas/metabolismo , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología
3.
Cell ; 166(4): 963-976, 2016 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-27477511

RESUMEN

Pancreatic cancer is a deadly malignancy that lacks effective therapeutics. We previously reported that oncogenic Kras induced the redox master regulator Nfe2l2/Nrf2 to stimulate pancreatic and lung cancer initiation. Here, we show that NRF2 is necessary to maintain pancreatic cancer proliferation by regulating mRNA translation. Specifically, loss of NRF2 led to defects in autocrine epidermal growth factor receptor (EGFR) signaling and oxidation of specific translational regulatory proteins, resulting in impaired cap-dependent and cap-independent mRNA translation in pancreatic cancer cells. Combined targeting of the EGFR effector AKT and the glutathione antioxidant pathway mimicked Nrf2 ablation to potently inhibit pancreatic cancer ex vivo and in vivo, representing a promising synthetic lethal strategy for treating the disease.


Asunto(s)
Factor 2 Relacionado con NF-E2/metabolismo , Neoplasias Pancreáticas/metabolismo , Biosíntesis de Proteínas , Animales , Comunicación Autocrina , Cisteína/metabolismo , Glutatión/metabolismo , Humanos , Ratones , Organoides/metabolismo , Neoplasias Pancreáticas/patología , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Transducción de Señal
4.
Cell ; 162(2): 259-270, 2015 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-26144316

RESUMEN

Despite being surrounded by diverse nutrients, mammalian cells preferentially metabolize glucose and free amino acids. Recently, Ras-induced macropinocytosis of extracellular proteins was shown to reduce a transformed cell's dependence on extracellular glutamine. Here, we demonstrate that protein macropinocytosis can also serve as an essential amino acid source. Lysosomal degradation of extracellular proteins can sustain cell survival and induce activation of mTORC1 but fails to elicit significant cell accumulation. Unlike its growth-promoting activity under amino-acid-replete conditions, we discovered that mTORC1 activation suppresses proliferation when cells rely on extracellular proteins as an amino acid source. Inhibiting mTORC1 results in increased catabolism of endocytosed proteins and enhances cell proliferation during nutrient-depleted conditions in vitro and within vascularly compromised tumors in vivo. Thus, by preventing nutritional consumption of extracellular proteins, mTORC1 couples growth to availability of free amino acids. These results may have important implications for the use of mTOR inhibitors as therapeutics.


Asunto(s)
Embrión de Mamíferos/citología , Complejos Multiproteicos/metabolismo , Proteínas/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Albúminas/metabolismo , Aminoácidos/metabolismo , Animales , Proliferación Celular , Supervivencia Celular , Eucariontes/clasificación , Eucariontes/citología , Eucariontes/metabolismo , Fibroblastos/metabolismo , Lisosomas/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Pinocitosis , Proteínas/química , Proteínas ras/metabolismo
5.
Cell ; 160(1-2): 324-38, 2015 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-25557080

RESUMEN

Pancreatic cancer is one of the most lethal malignancies due to its late diagnosis and limited response to treatment. Tractable methods to identify and interrogate pathways involved in pancreatic tumorigenesis are urgently needed. We established organoid models from normal and neoplastic murine and human pancreas tissues. Pancreatic organoids can be rapidly generated from resected tumors and biopsies, survive cryopreservation, and exhibit ductal- and disease-stage-specific characteristics. Orthotopically transplanted neoplastic organoids recapitulate the full spectrum of tumor development by forming early-grade neoplasms that progress to locally invasive and metastatic carcinomas. Due to their ability to be genetically manipulated, organoids are a platform to probe genetic cooperation. Comprehensive transcriptional and proteomic analyses of murine pancreatic organoids revealed genes and pathways altered during disease progression. The confirmation of many of these protein changes in human tissues demonstrates that organoids are a facile model system to discover characteristics of this deadly malignancy.


Asunto(s)
Carcinoma Ductal Pancreático/patología , Modelos Biológicos , Técnicas de Cultivo de Órganos , Organoides/patología , Neoplasias Pancreáticas/patología , Animales , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Desnudos , Páncreas/metabolismo , Páncreas/patología
6.
Cell ; 159(1): 80-93, 2014 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-25259922

RESUMEN

The poor clinical outcome in pancreatic ductal adenocarcinoma (PDA) is attributed to intrinsic chemoresistance and a growth-permissive tumor microenvironment. Conversion of quiescent to activated pancreatic stellate cells (PSCs) drives the severe stromal reaction that characterizes PDA. Here, we reveal that the vitamin D receptor (VDR) is expressed in stroma from human pancreatic tumors and that treatment with the VDR ligand calcipotriol markedly reduced markers of inflammation and fibrosis in pancreatitis and human tumor stroma. We show that VDR acts as a master transcriptional regulator of PSCs to reprise the quiescent state, resulting in induced stromal remodeling, increased intratumoral gemcitabine, reduced tumor volume, and a 57% increase in survival compared to chemotherapy alone. This work describes a molecular strategy through which transcriptional reprogramming of tumor stroma enables chemotherapeutic response and suggests vitamin D priming as an adjunct in PDA therapy. PAPERFLICK:


Asunto(s)
Adenocarcinoma/tratamiento farmacológico , Antineoplásicos/farmacología , Calcitriol/análogos & derivados , Carcinoma Ductal Pancreático/tratamiento farmacológico , Neoplasias Pancreáticas/tratamiento farmacológico , Receptores de Calcitriol/metabolismo , Adenocarcinoma/patología , Animales , Calcitriol/farmacología , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Humanos , Ratones Endogámicos C57BL , Datos de Secuencia Molecular , Neoplasias Pancreáticas/patología , Pancreatitis/tratamiento farmacológico , Pancreatitis/prevención & control , Transducción de Señal , Células del Estroma/patología
7.
Physiol Rev ; 101(1): 147-176, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-32466724

RESUMEN

Efforts to develop anti-cancer therapies have largely focused on targeting the epithelial compartment, despite the presence of non-neoplastic stromal components that substantially contribute to the progression of the tumor. Indeed, cancer cell survival, growth, migration, and even dormancy are influenced by the surrounding tumor microenvironment (TME). Within the TME, cancer-associated fibroblasts (CAFs) have been shown to play several roles in the development of a tumor. They secrete growth factors, inflammatory ligands, and extracellular matrix proteins that promote cancer cell proliferation, therapy resistance, and immune exclusion. However, recent work indicates that CAFs may also restrain tumor progression in some circumstances. In this review, we summarize the body of work on CAFs, with a particular focus on the most recent discoveries about fibroblast heterogeneity, plasticity, and functions. We also highlight the commonalities of fibroblasts present across different cancer types, and in normal and inflammatory states. Finally, we present the latest advances regarding therapeutic strategies targeting CAFs that are undergoing preclinical and clinical evaluation.


Asunto(s)
Fibroblastos Asociados al Cáncer/patología , Neoplasias/patología , Animales , Antineoplásicos/farmacología , Fibroblastos Asociados al Cáncer/efectos de los fármacos , Proliferación Celular , Humanos , Neoplasias/tratamiento farmacológico , Microambiente Tumoral
8.
Cell ; 148(1-2): 21-3, 2012 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-22265397

RESUMEN

Although metastasis is a major cause of morbidity and mortality in patients with pancreatic cancer, the requisite events are currently unknown. In this issue of Cell, Haeno et al. and Rhim et al. propose that metastasis occurs much earlier than previously anticipated, with clear implications for improving patient care.

9.
Cell ; 147(2): 382-95, 2011 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-22000016

RESUMEN

We recently proposed that competitive endogenous RNAs (ceRNAs) sequester microRNAs to regulate mRNA transcripts containing common microRNA recognition elements (MREs). However, the functional role of ceRNAs in cancer remains unknown. Loss of PTEN, a tumor suppressor regulated by ceRNA activity, frequently occurs in melanoma. Here, we report the discovery of significant enrichment of putative PTEN ceRNAs among genes whose loss accelerates tumorigenesis following Sleeping Beauty insertional mutagenesis in a mouse model of melanoma. We validated several putative PTEN ceRNAs and further characterized one, the ZEB2 transcript. We show that ZEB2 modulates PTEN protein levels in a microRNA-dependent, protein coding-independent manner. Attenuation of ZEB2 expression activates the PI3K/AKT pathway, enhances cell transformation, and commonly occurs in human melanomas and other cancers expressing low PTEN levels. Our study genetically identifies multiple putative microRNA decoys for PTEN, validates ZEB2 mRNA as a bona fide PTEN ceRNA, and demonstrates that abrogated ZEB2 expression cooperates with BRAF(V600E) to promote melanomagenesis.


Asunto(s)
Proteínas de Homeodominio/genética , Melanoma/genética , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo , Proteínas Proto-Oncogénicas B-raf/genética , ARN Mensajero/metabolismo , Proteínas Represoras/genética , Regiones no Traducidas 3' , Animales , Modelos Animales de Enfermedad , Proteínas de Homeodominio/metabolismo , Humanos , Ratones , MicroARNs/metabolismo , Mutagénesis Insercional , Proteínas Represoras/metabolismo , Caja Homeótica 2 de Unión a E-Box con Dedos de Zinc
10.
Nature ; 579(7797): 130-135, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32076273

RESUMEN

Group 2 innate lymphoid cells (ILC2s) regulate inflammation and immunity in mammalian tissues1,2. Although ILC2s are found in cancers of these tissues3, their roles in cancer immunity and immunotherapy are unclear. Here we show that ILC2s infiltrate pancreatic ductal adenocarcinomas (PDACs) to activate tissue-specific tumour immunity. Interleukin-33 (IL33) activates tumour ILC2s (TILC2s) and CD8+ T cells in orthotopic pancreatic tumours but not heterotopic skin tumours in mice to restrict pancreas-specific tumour growth. Resting and activated TILC2s express the inhibitory checkpoint receptor PD-1. Antibody-mediated PD-1 blockade relieves ILC2 cell-intrinsic PD-1 inhibition to expand TILC2s, augment anti-tumour immunity, and enhance tumour control, identifying activated TILC2s as targets of anti-PD-1 immunotherapy. Finally, both PD-1+ TILC2s and PD-1+ T cells are present in most human PDACs. Our results identify ILC2s as anti-cancer immune cells for PDAC immunotherapy. More broadly, ILC2s emerge as tissue-specific enhancers of cancer immunity that amplify the efficacy of anti-PD-1 immunotherapy. As ILC2s and T cells co-exist in human cancers and share stimulatory and inhibitory pathways, immunotherapeutic strategies to collectively target anti-cancer ILC2s and T cells may be broadly applicable.


Asunto(s)
Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/inmunología , Linfocitos/inmunología , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/inmunología , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Animales , Células Dendríticas/inmunología , Femenino , Humanos , Inmunidad Innata/inmunología , Inmunoterapia , Interleucina-33/inmunología , Activación de Linfocitos , Masculino , Ratones , Ratones Endogámicos C57BL , Linfocitos T/inmunología
11.
Proc Natl Acad Sci U S A ; 120(36): e2303859120, 2023 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-37639593

RESUMEN

Recurrent chromosomal rearrangements found in rhabdomyosarcoma (RMS) produce the PAX3-FOXO1 fusion protein, which is an oncogenic driver and a dependency in this disease. One important function of PAX3-FOXO1 is to arrest myogenic differentiation, which is linked to the ability of RMS cells to gain an unlimited proliferation potential. Here, we developed a phenotypic screening strategy for identifying factors that collaborate with PAX3-FOXO1 to block myo-differentiation in RMS. Unlike most genes evaluated in our screen, we found that loss of any of the three subunits of the Nuclear Factor Y (NF-Y) complex leads to a myo-differentiation phenotype that resembles the effect of inactivating PAX3-FOXO1. While the transcriptomes of NF-Y- and PAX3-FOXO1-deficient RMS cells bear remarkable similarity to one another, we found that these two transcription factors occupy nonoverlapping sites along the genome: NF-Y preferentially occupies promoters, whereas PAX3-FOXO1 primarily binds to distal enhancers. By integrating multiple functional approaches, we map the PAX3 promoter as the point of intersection between these two regulators. We show that NF-Y occupies CCAAT motifs present upstream of PAX3 to function as a transcriptional activator of PAX3-FOXO1 expression in RMS. These findings reveal a critical upstream role of NF-Y in the oncogenic PAX3-FOXO1 pathway, highlighting how a broadly essential transcription factor can perform tumor-specific roles in governing cellular state.


Asunto(s)
Rabdomiosarcoma , Factor de Unión a CCAAT/genética , Diferenciación Celular/genética , Aberraciones Cromosómicas , Rabdomiosarcoma/genética , Factores de Transcripción
12.
Gut ; 73(6): 941-954, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38262672

RESUMEN

OBJECTIVE: The optimal therapeutic response in cancer patients is highly dependent upon the differentiation state of their tumours. Pancreatic ductal adenocarcinoma (PDA) is a lethal cancer that harbours distinct phenotypic subtypes with preferential sensitivities to standard therapies. This study aimed to investigate intratumour heterogeneity and plasticity of cancer cell states in PDA in order to reveal cell state-specific regulators. DESIGN: We analysed single-cell expression profiling of mouse PDAs, revealing intratumour heterogeneity and cell plasticity and identified pathways activated in the different cell states. We performed comparative analysis of murine and human expression states and confirmed their phenotypic diversity in specimens by immunolabeling. We assessed the function of phenotypic regulators using mouse models of PDA, organoids, cell lines and orthotopically grafted tumour models. RESULTS: Our expression analysis and immunolabeling analysis show that a mucus production programme regulated by the transcription factor SPDEF is highly active in precancerous lesions and the classical subtype of PDA - the most common differentiation state. SPDEF maintains the classical differentiation and supports PDA transformation in vivo. The SPDEF tumour-promoting function is mediated by its target genes AGR2 and ERN2/IRE1ß that regulate mucus production, and inactivation of the SPDEF programme impairs tumour growth and facilitates subtype interconversion from classical towards basal-like differentiation. CONCLUSIONS: Our findings expand our understanding of the transcriptional programmes active in precancerous lesions and PDAs of classical differentiation, determine the regulators of mucus production as specific vulnerabilities in these cell states and reveal phenotype switching as a response mechanism to inactivation of differentiation states determinants.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Carcinoma Ductal Pancreático/patología , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Animales , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Ratones , Humanos , Moco/metabolismo , Mucoproteínas/metabolismo , Mucoproteínas/genética , Línea Celular Tumoral , Diferenciación Celular , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas/metabolismo , Proteínas/genética , Organoides/patología , Organoides/metabolismo , Plasticidad de la Célula , Regulación Neoplásica de la Expresión Génica , Modelos Animales de Enfermedad , Proteínas Oncogénicas
13.
Gastroenterology ; 165(1): 133-148.e17, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36907523

RESUMEN

BACKGROUND & AIMS: Pancreatic ductal adenocarcinoma (PDA), with its highly metastatic propensity, is one of the most lethal subtypes of pancreatic cancer. Although recent large-scale transcriptomic studies have demonstrated that heterogeneous gene expressions play an essential role in determining molecular phenotypes of PDA, biological cues for and consequences of distinct transcriptional programs remain unclear. METHODS: We developed an experimental model that enforces the transition of PDA cells toward a basal-like subtype. We combined epigenome and transcriptome analyses with extensive in vitro and in vivo evaluations of tumorigenicity to demonstrate the validity of basal-like subtype differentiation in association with endothelial-like enhancer landscapes via TEA domain transcription factor 2 (TEAD2). Finally, we used loss-of-function experiments to investigate the importance of TEAD2 in regulating reprogrammed enhancer landscape and metastasis in basal-like PDA cells. RESULTS: Aggressive characteristics of the basal-like subtype are faithfully recapitulated in vitro and in vivo, demonstrating the physiological relevance of our model. Further, we showed that basal-like subtype PDA cells acquire a TEAD2-dependent proangiogenic enhancer landscape. Genetic and pharmacologic inhibitions of TEAD2 in basal-like subtype PDA cells impair their proangiogenic phenotypes in vitro and cancer progression in vivo. Last, we identify CD109 as a critical TEAD2 downstream mediator that maintains constitutively activated JAK-STAT signaling in basal-like PDA cells and tumors. CONCLUSIONS: Our findings implicate a TEAD2-CD109-JAK/STAT axis in the basal-like differentiated pancreatic cancer cells and as a potential therapeutic vulnerability.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/patología , Carcinoma Ductal Pancreático/patología , Páncreas/patología , Diferenciación Celular , Regulación Neoplásica de la Expresión Génica , Factores de Transcripción de Dominio TEA , Neoplasias Pancreáticas
14.
Proc Natl Acad Sci U S A ; 118(21)2021 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-34021083

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is a lethal malignancy with limited treatment options. Although activating mutations of the KRAS GTPase are the predominant dependency present in >90% of PDAC patients, targeting KRAS mutants directly has been challenging in PDAC. Similarly, strategies targeting known KRAS downstream effectors have had limited clinical success due to feedback mechanisms, alternate pathways, and dose-limiting toxicities in normal tissues. Therefore, identifying additional functionally relevant KRAS interactions in PDAC may allow for a better understanding of feedback mechanisms and unveil potential therapeutic targets. Here, we used proximity labeling to identify protein interactors of active KRAS in PDAC cells. We expressed fusions of wild-type (WT) (BirA-KRAS4B), mutant (BirA-KRAS4BG12D), and nontransforming cytosolic double mutant (BirA-KRAS4BG12D/C185S) KRAS with the BirA biotin ligase in murine PDAC cells. Mass spectrometry analysis revealed that RSK1 selectively interacts with membrane-bound KRASG12D, and we demonstrate that this interaction requires NF1 and SPRED2. We find that membrane RSK1 mediates negative feedback on WT RAS signaling and impedes the proliferation of pancreatic cancer cells upon the ablation of mutant KRAS. Our findings link NF1 to the membrane-localized functions of RSK1 and highlight a role for WT RAS signaling in promoting adaptive resistance to mutant KRAS-specific inhibitors in PDAC.


Asunto(s)
Carcinoma Ductal Pancreático/genética , Neurofibromina 1/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Quinasas S6 Ribosómicas 90-kDa/genética , Animales , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Proliferación Celular/genética , Humanos , Ratones , Mutación , Páncreas/patología , Proteínas Represoras/genética , Transducción de Señal/genética
15.
Anal Chem ; 95(13): 5661-5670, 2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-36952386

RESUMEN

Imaging defined aspects of functional tumor biology with bioluminescent reporter transgenes is a popular approach in preclinical drug development as it is sensitive, relatively high-throughput and low cost. However, the lack of internal controls subject functional bioluminescence to a number of unpredictable variables that reduce this powerful tool to semi-quantitative interpretation of large-scale effects. Here, we report the generation of sensitive and quantitative live reporters for two key measures of functional cancer biology and pharmacologic stress: the cell cycle and oxidative stress. We developed a two-colored readout, where two independent enzymes convert a common imaging substrate into spectrally distinguishable light. The signal intensity of one color is dependent upon the biological state, whereas the other color is constitutively expressed. The ratio of emitted colored light corrects the functional signal for independent procedural variables, substantially improving the robustness and interpretation of relatively low-fold changes in functional signal intensity after drug treatment. The application of these readouts in vitro is highly advantageous, as peak cell response to therapy can now be readily visualized for single or combination treatments and not simply assessed at an arbitrary and destructive timepoint. Spectral imaging in vivo can be challenging, but we also present evidence to show that the reporters can work in this context as well. Collectively, the development and validation of these internally controlled reporters allow researchers to robustly and dynamically visualize tumor cell biology in response to treatment. Given the prevalence of bioluminescence imaging, this presents significant and much needed opportunities for preclinical therapeutic development.

16.
Gut ; 71(5): 879-888, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35144974

RESUMEN

OBJECTIVE: We assessed whether famotidine improved inflammation and symptomatic recovery in outpatients with mild to moderate COVID-19. DESIGN: Randomised, double-blind, placebo-controlled, fully remote, phase 2 clinical trial (NCT04724720) enrolling symptomatic unvaccinated adult outpatients with confirmed COVID-19 between January 2021 and April 2021 from two US centres. Patients self-administered 80 mg famotidine (n=28) or placebo (n=27) orally three times a day for 14 consecutive days. Endpoints were time to (primary) or rate of (secondary) symptom resolution, and resolution of inflammation (exploratory). RESULTS: Of 55 patients in the intention-to-treat group (median age 35 years (IQR: 20); 35 women (64%); 18 African American (33%); 14 Hispanic (26%)), 52 (95%) completed the trial, submitting 1358 electronic symptom surveys. Time to symptom resolution was not statistically improved (p=0.4). Rate of symptom resolution was improved for patients taking famotidine (p<0.0001). Estimated 50% reduction of overall baseline symptom scores were achieved at 8.2 days (95% CI: 7 to 9.8 days) for famotidine and 11.4 days (95% CI: 10.3 to 12.6 days) for placebo treated patients. Differences were independent of patient sex, race or ethnicity. Five self-limiting adverse events occurred (famotidine, n=2 (40%); placebo, n=3 (60%)). On day 7, fewer patients on famotidine had detectable interferon alpha plasma levels (p=0.04). Plasma immunoglobulin type G levels to SARS-CoV-2 nucleocapsid core protein were similar between both arms. CONCLUSIONS: Famotidine was safe and well tolerated in outpatients with mild to moderate COVID-19. Famotidine led to earlier resolution of symptoms and inflammation without reducing anti-SARS-CoV-2 immunity. Additional randomised trials are required.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Famotidina , Adulto , Método Doble Ciego , Famotidina/uso terapéutico , Femenino , Humanos , Inflamación , SARS-CoV-2 , Resultado del Tratamiento
17.
Ann Surg ; 276(3): 450-462, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35972511

RESUMEN

OBJECTIVE: To evaluate if patient-derived organoids (PDOs) may predict response to neoadjuvant (NAT) chemotherapy in patients with pancreatic adenocarcinoma. BACKGROUND: PDOs have been explored as a biomarker of therapy response and for personalized therapeutics in patients with pancreatic cancer. METHODS: During 2017-2021, patients were enrolled into an IRB-approved protocol and PDO cultures were established. PDOs of interest were analyzed through a translational pipeline incorporating molecular profiling and drug sensitivity testing. RESULTS: One hundred thirty-six samples, including both surgical resections and fine needle aspiration/biopsy from 117 patients with pancreatic cancer were collected. This biobank included diversity in stage, sex, age, and race, with minority populations representing 1/3 of collected cases (16% Black, 9% Asian, 7% Hispanic/Latino). Among surgical specimens, PDO generation was successful in 71% (15 of 21) of patients who had received NAT prior to sample collection and in 76% (39 of 51) of patients who were untreated with chemotherapy or radiation at the time of collection. Pathological response to NAT correlated with PDO chemotherapy response, particularly oxaliplatin. We demonstrated the feasibility of a rapid PDO drug screen and generated data within 7 days of tissue resection. CONCLUSION: Herein we report a large single-institution organoid biobank, including ethnic minority samples. The ability to establish PDOs from chemotherapy-naive and post-NAT tissue enables longitudinal PDO generation to assess dynamic chemotherapy sensitivity profiling. PDOs can be rapidly screened and further development of rapid screening may aid in the initial stratification of patients to the most active NAT regimen.


Asunto(s)
Adenocarcinoma , Antineoplásicos , Neoplasias Pancreáticas , Adenocarcinoma/tratamiento farmacológico , Adenocarcinoma/cirugía , Antineoplásicos/uso terapéutico , Etnicidad , Humanos , Grupos Minoritarios , Terapia Neoadyuvante , Organoides , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas
18.
Gastroenterology ; 160(1): 362-377.e13, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33039466

RESUMEN

BACKGROUND & AIMS: Continuing recalcitrance to therapy cements pancreatic cancer (PC) as the most lethal malignancy, which is set to become the second leading cause of cancer death in our society. The study aim was to investigate the association between DNA damage response (DDR), replication stress, and novel therapeutic response in PC to develop a biomarker-driven therapeutic strategy targeting DDR and replication stress in PC. METHODS: We interrogated the transcriptome, genome, proteome, and functional characteristics of 61 novel PC patient-derived cell lines to define novel therapeutic strategies targeting DDR and replication stress. Validation was done in patient-derived xenografts and human PC organoids. RESULTS: Patient-derived cell lines faithfully recapitulate the epithelial component of pancreatic tumors, including previously described molecular subtypes. Biomarkers of DDR deficiency, including a novel signature of homologous recombination deficiency, cosegregates with response to platinum (P < .001) and PARP inhibitor therapy (P < .001) in vitro and in vivo. We generated a novel signature of replication stress that predicts response to ATR (P < .018) and WEE1 inhibitor (P < .029) treatment in both cell lines and human PC organoids. Replication stress was enriched in the squamous subtype of PC (P < .001) but was not associated with DDR deficiency. CONCLUSIONS: Replication stress and DDR deficiency are independent of each other, creating opportunities for therapy in DDR-proficient PC and after platinum therapy.


Asunto(s)
Adenocarcinoma/patología , Daño del ADN/genética , Reparación del ADN/genética , Replicación del ADN/genética , Neoplasias Pancreáticas/patología , Adenocarcinoma/genética , Adenocarcinoma/terapia , Biomarcadores , Técnicas de Cultivo de Célula , Línea Celular Tumoral , Humanos , Terapia Molecular Dirigida , Organoides , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/terapia , Ensayos Antitumor por Modelo de Xenoinjerto
19.
Proc Natl Acad Sci U S A ; 116(39): 19609-19618, 2019 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-31484774

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) has prominent extracellular matrix (ECM) that compromises treatments yet cannot be nonselectively disrupted without adverse consequences. ECM of PDAC, despite the recognition of its importance, has not been comprehensively studied in patients. In this study, we used quantitative mass spectrometry (MS)-based proteomics to characterize ECM proteins in normal pancreas and pancreatic intraepithelial neoplasia (PanIN)- and PDAC-bearing pancreas from both human patients and mouse genetic models, as well as chronic pancreatitis patient samples. We describe detailed changes in both abundance and complexity of matrisome proteins in the course of PDAC progression. We reveal an early up-regulated group of matrisome proteins in PanIN, which are further up-regulated in PDAC, and we uncover notable similarities in matrix changes between pancreatitis and PDAC. We further assigned cellular origins to matrisome proteins by performing MS on multiple lines of human-to-mouse xenograft tumors. We found that, although stromal cells produce over 90% of the ECM mass, elevated levels of ECM proteins derived from the tumor cells, but not those produced exclusively by stromal cells, tend to correlate with poor patient survival. Furthermore, distinct pathways were implicated in regulating expression of matrisome proteins in cancer cells and stromal cells. We suggest that, rather than global suppression of ECM production, more precise ECM manipulations, such as targeting tumor-promoting ECM proteins and their regulators in cancer cells, could be more effective therapeutically.


Asunto(s)
Carcinoma Ductal Pancreático/metabolismo , Matriz Extracelular/metabolismo , Células del Estroma/metabolismo , Adulto , Animales , Biomarcadores de Tumor/metabolismo , Carcinoma Ductal Pancreático/patología , Progresión de la Enfermedad , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Páncreas/metabolismo , Neoplasias Pancreáticas/metabolismo , Pancreatitis Crónica/patología , Proteómica/métodos , Ensayos Antitumor por Modelo de Xenoinjerto , Neoplasias Pancreáticas
20.
Clin Gastroenterol Hepatol ; 19(4): 845-847, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-32119924

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) has one of the poorest prognoses of all malignancies, with a 5-year survival rate <8%.1,2 Suspicious lesions are typically diagnosed via endoscopic ultrasound-guided fine-needle aspiration or endoscopic ultrasound-guided fine-needle biopsy (EUS-FNB).3 Fewer needle passes decreases the risk of postprocedure complications, including pancreatitis and hemorrhage, while allowing additional needle passes to be used for adjuvant tissue testing, such as organoid creation and DNA sequencing.


Asunto(s)
Adenocarcinoma , Biopsia por Aspiración con Aguja Fina Guiada por Ultrasonido Endoscópico/métodos , Neoplasias Pancreáticas , Adenocarcinoma/diagnóstico , Humanos , Organoides , Neoplasias Pancreáticas/diagnóstico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA