Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 186(5): 1013-1025.e24, 2023 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-36827973

RESUMEN

The emergence of drug-resistant tuberculosis has created an urgent need for new anti-tubercular agents. Here, we report the discovery of a series of macrolides called sequanamycins with outstanding in vitro and in vivo activity against Mycobacterium tuberculosis (Mtb). Sequanamycins are bacterial ribosome inhibitors that interact with the ribosome in a similar manner to classic macrolides like erythromycin and clarithromycin, but with binding characteristics that allow them to overcome the inherent macrolide resistance of Mtb. Structures of the ribosome with bound inhibitors were used to optimize sequanamycin to produce the advanced lead compound SEQ-9. SEQ-9 was efficacious in mouse models of acute and chronic TB as a single agent, and it demonstrated bactericidal activity in a murine TB infection model in combination with other TB drugs. These results support further investigation of this series as TB clinical candidates, with the potential for use in new regimens against drug-susceptible and drug-resistant TB.


Asunto(s)
Antituberculosos , Mycobacterium tuberculosis , Animales , Ratones , Antituberculosos/farmacología , Macrólidos , Farmacorresistencia Bacteriana , Claritromicina
2.
Antimicrob Agents Chemother ; 68(4): e0156223, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38376228

RESUMEN

The combination of bedaquiline, pretomanid, and linezolid (BPaL) has become a preferred regimen for treating multidrug- and extensively drug-resistant tuberculosis (TB). However, treatment-limiting toxicities of linezolid and reports of emerging bedaquiline and pretomanid resistance necessitate efforts to develop new short-course oral regimens. We recently found that the addition of GSK2556286 increases the bactericidal and sterilizing activity of BPa-containing regimens in a well-established BALB/c mouse model of tuberculosis. Here, we used this model to evaluate the potential of new regimens combining bedaquiline or the more potent diarylquinoline TBAJ-587 with GSK2556286 and the DprE1 inhibitor TBA-7371, all of which are currently in early-phase clinical trials. We found the combination of bedaquiline, GSK2556286, and TBA-7371 to be more active than the first-line regimen and nearly as effective as BPaL in terms of bactericidal and sterilizing activity. In addition, we found that GSK2556286 and TBA-7371 were as effective as pretomanid and the novel oxazolidinone TBI-223 when either drug pair was combined with TBAJ-587 and that the addition of GSK2556286 increased the bactericidal activity of the TBAJ-587, pretomanid, and TBI-223 combination. We conclude that GSK2556286 and TBA-7371 have the potential to replace pretomanid, an oxazolidinone, or both components, in combination with bedaquiline or TBAJ-587.


Asunto(s)
Mycobacterium tuberculosis , Nitroimidazoles , Oxazolidinonas , Tuberculosis Resistente a Múltiples Medicamentos , Tuberculosis , Animales , Ratones , Diarilquinolinas/farmacología , Diarilquinolinas/uso terapéutico , Antituberculosos/uso terapéutico , Antituberculosos/farmacología , Linezolid/farmacología , Linezolid/uso terapéutico , Tuberculosis/tratamiento farmacológico , Nitroimidazoles/farmacología , Oxazolidinonas/farmacología , Oxazolidinonas/uso terapéutico , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico
3.
Eur Phys J E Soft Matter ; 46(9): 80, 2023 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-37695466

RESUMEN

 The Derjaguin-Landau-Verwey-Overbeek (DLVO) theory, introduced more than 70 years ago, is a hallmark of colloidal particle modeling. For highly charged particles in the dilute regime, it is often supplemented by Alexander's prescription (Alexander et al. in J Chem Phys 80:5776, 1984) for using a renormalized charge. Here, we solve the problem of the interaction between two charged colloids at finite ionic strength, including dielectric mismatch effects, using an efficient numerical scheme to solve the nonlinear Poisson-Boltzmann (NPB) equation with unknown boundary conditions. Our results perfectly match the analytical predictions for the renormalized charge by Trizac and coworkers (Aubouy et al. in J Phys A 36:5835, 2003). Moreover, they allow us to reinterpret previous molecular dynamics (MD) simulation results by Kreer et al. (Phys Rev E 74:021401, 2006), rendering them now in agreement with the expected behavior. We furthermore find that the influence of polarization becomes important only when the Debye layers overlap significantly.

4.
Antimicrob Agents Chemother ; 66(6): e0013222, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35607978

RESUMEN

As a result of a high-throughput compound screening campaign using Mycobacterium tuberculosis-infected macrophages, a new drug candidate for the treatment of tuberculosis has been identified. GSK2556286 inhibits growth within human macrophages (50% inhibitory concentration [IC50] = 0.07 µM), is active against extracellular bacteria in cholesterol-containing culture medium, and exhibits no cross-resistance with known antitubercular drugs. In addition, it has shown efficacy in different mouse models of tuberculosis (TB) and has an adequate safety profile in two preclinical species. These features indicate a compound with a novel mode of action, although still not fully defined, that is effective against both multidrug-resistant (MDR) or extensively drug-resistant (XDR) and drug-sensitive (DS) M. tuberculosis with the potential to shorten the duration of treatment in novel combination drug regimens. (This study has been registered at ClinicalTrials.gov under identifier NCT04472897).


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis Resistente a Múltiples Medicamentos , Tuberculosis , Animales , Antituberculosos/farmacología , Antituberculosos/uso terapéutico , Macrófagos , Ratones , Pruebas de Sensibilidad Microbiana , Tuberculosis/tratamiento farmacológico , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico
5.
J Infect Dis ; 223(11): 1855-1864, 2021 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-31993638

RESUMEN

BACKGROUND: Linezolid (LZD) is bactericidal against Mycobacterium tuberculosis, but it has treatment-limiting toxicities. A better understanding of exposure-response relationships governing LZD efficacy and toxicity will inform dosing strategies. Because in vitro monotherapy studies yielded conflicting results, we explored LZD pharmacokinetic/pharmacodynamic (PK/PD) relationships in vivo against actively and nonactively multiplying bacteria, including in combination with pretomanid. METHODS: Linezolid multidose pharmacokinetics were modeled in mice. Dose-fractionation studies were performed in acute (net bacterial growth) and chronic (no net growth) infection models. In acute models, LZD was administered alone or with bacteriostatic or bactericidal pretomanid doses. Correlations between PK/PD parameters and lung colony-forming units (CFUs) and complete blood counts were assessed. RESULTS: Overall, time above minimum inhibitory concentration (T>MIC) correlated best with CFU decline. However, in growth-constrained models (ie, chronic infection, coadministration with pretomanid 50 mg/kg per day), area under the concentration-time curve over MIC (AUC/MIC) had similar explanatory power. Red blood cell counts correlated strongly with LZD minimum concentration (Cmin). CONCLUSIONS: Although T>MIC was the most consistent correlate of efficacy, AUC/MIC was equally predictive when bacterial multiplication was constrained by host immunity or pretomanid. In effective combination regimens, administering the same total LZD dose less frequently may be equally effective and cause less Cmin-dependent toxicity.


Asunto(s)
Antibacterianos , Linezolid , Infección Persistente , Tuberculosis , Animales , Antibacterianos/farmacología , Antibacterianos/toxicidad , Área Bajo la Curva , Modelos Animales de Enfermedad , Linezolid/farmacología , Linezolid/toxicidad , Ratones , Pruebas de Sensibilidad Microbiana , Tuberculosis/tratamiento farmacológico
6.
Artículo en Inglés | MEDLINE | ID: mdl-31907182

RESUMEN

Tuberculosis (TB) drug, regimen, and vaccine development rely heavily on preclinical animal experiments, and quantification of bacterial and immune response dynamics is essential for understanding drug and vaccine efficacy. A mechanism-based model was built to describe Mycobacterium tuberculosis H37Rv infection over time in BALB/c and athymic nude mice, which consisted of bacterial replication, bacterial death, and adaptive immune effects. The adaptive immune effect was best described by a sigmoidal function on both bacterial load and incubation time. Applications to demonstrate the utility of this baseline model showed (i) the important influence of the adaptive immune response on pyrazinamide (PZA) drug efficacy, (ii) a persistent adaptive immune effect in mice relapsing after chemotherapy cessation, and (iii) the protective effect of vaccines after M. tuberculosis challenge. These findings demonstrate the utility of our model for describing M. tuberculosis infection and corresponding adaptive immune dynamics for evaluating the efficacy of TB drugs, regimens, and vaccines.


Asunto(s)
Antituberculosos/farmacología , Mycobacterium tuberculosis/efectos de los fármacos , Pirazinamida/farmacología , Vacunas contra la Tuberculosis/administración & dosificación , Tuberculosis/tratamiento farmacológico , Tuberculosis/prevención & control , Inmunidad Adaptativa/efectos de los fármacos , Animales , Carga Bacteriana/efectos de los fármacos , Modelos Animales de Enfermedad , Femenino , Interacciones Huésped-Patógeno/inmunología , Inmunización/métodos , Inmunogenicidad Vacunal , Isoniazida/farmacología , Pulmón/efectos de los fármacos , Pulmón/inmunología , Pulmón/microbiología , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Mycobacterium tuberculosis/crecimiento & desarrollo , Mycobacterium tuberculosis/inmunología , Recurrencia , Rifampin/farmacología , Tuberculosis/inmunología , Tuberculosis/microbiología
7.
Artículo en Inglés | MEDLINE | ID: mdl-32205344

RESUMEN

Telacebec (Q203) is a new antitubercular drug with extremely potent activity against Mycobacterium ulcerans Here, we explored the treatment-shortening potential of Q203 alone or in combination with rifampin (RIF) in a mouse footpad infection model. The first study compared Q203 at 5 and 10 mg/kg doses alone and with rifampin. Q203 alone rendered most mouse footpads culture negative in 2 weeks. Combining Q203 with rifampin resulted in a relapse-free cure 24 weeks after completing 2 weeks of treatment, compared to a 25% relapse rate in mice receiving RIF with clarithromycin, the current standard of care, for 4 weeks. The second study explored the dose-ranging activity of Q203 alone and with RIF, including the extended activity of Q203 after treatment discontinuation. The bactericidal activity of Q203 persisted for ≥ 4 weeks beyond the last dose. All mice receiving just 1 week of Q203 at 2 to 10 mg/kg were culture negative 4 weeks after stopping treatment. Mice receiving 2 weeks of Q203 at 0.5, 2, and 10 mg/kg were culture negative 4 weeks after treatment. RIF did not increase the efficacy of Q203. A pharmacokinetics substudy revealed that Q203 doses of 2 to 10 mg/kg in mice produce plasma concentrations similar to those produced by 100 to 300 mg doses in humans, with no adverse effect of RIF on Q203 concentrations. These results indicate the extraordinary potential of Q203 to reduce the duration of treatment necessary for a cure to ≤ 1 week (or 5 doses of 2 to 10 mg/kg) in our mouse footpad infection model and warrant further evaluation of Q203 in clinical trials.


Asunto(s)
Úlcera de Buruli , Mycobacterium ulcerans , Animales , Antibacterianos/uso terapéutico , Úlcera de Buruli/tratamiento farmacológico , Quimioterapia Combinada , Imidazoles , Ratones , Ratones Endogámicos BALB C , Piperidinas , Piridinas
8.
Artículo en Inglés | MEDLINE | ID: mdl-31036687

RESUMEN

Buruli ulcer is treatable with antibiotics. An 8-week course of rifampin (RIF) and either streptomycin (STR) or clarithromycin (CLR) cures over 90% of patients. However, STR requires injections and may be toxic, and CLR shares an adverse drug-drug interaction with RIF and may be poorly tolerated. Studies in a mouse footpad infection model showed that increasing the dose of RIF or using the long-acting rifamycin rifapentine (RPT), in combination with clofazimine (CFZ), a relatively well-tolerated antibiotic, can shorten treatment to 4 weeks. CFZ is reduced by a component of the electron transport chain (ETC) to produce reactive oxygen species toxic to bacteria. Synergistic activity of CFZ with other ETC-targeting drugs, the ATP synthase inhibitor bedaquiline (BDQ) and the bc1:aa3 oxidase inhibitor Q203 (now named telacebec), was recently described against Mycobacterium tuberculosis Recognizing that M. tuberculosis mutants lacking the alternative bd oxidase are hypersusceptible to Q203 and that Mycobacterium ulcerans is a natural bd oxidase-deficient mutant, we tested the in vitro susceptibility of M. ulcerans to Q203 and evaluated the treatment-shortening potential of novel 3- and 4-drug regimens combining RPT, CFZ, Q203, and/or BDQ in a mouse footpad model. The MIC of Q203 was extremely low (0.000075 to 0.00015 µg/ml). Footpad swelling decreased more rapidly in mice treated with Q203-containing regimens than in mice treated with RIF and STR (RIF+STR) and RPT and CFZ (RPT+CFZ). Nearly all footpads were culture negative after only 2 weeks of treatment with regimens containing RPT, CFZ, and Q203. No relapse was detected after only 2 weeks of treatment in mice treated with any of the Q203-containing regimens. In contrast, 15% of mice receiving RIF+STR for 4 weeks relapsed. We conclude that it may be possible to cure patients with Buruli ulcer in 14 days or less using Q203-containing regimens rather than currently recommended 56-day regimens.


Asunto(s)
Antibacterianos/farmacología , Úlcera de Buruli/tratamiento farmacológico , Mycobacterium ulcerans/efectos de los fármacos , Animales , Carga Bacteriana , Úlcera de Buruli/microbiología , Úlcera de Buruli/patología , Claritromicina/farmacología , Clofazimina/farmacología , Modelos Animales de Enfermedad , Farmacorresistencia Bacteriana/efectos de los fármacos , Quimioterapia Combinada , Transporte de Electrón/efectos de los fármacos , Humanos , Imidazoles/farmacología , Ratones Endogámicos BALB C , Pruebas de Sensibilidad Microbiana , Mycobacterium ulcerans/genética , Piperidinas/farmacología , Piridinas/farmacología , Rifampin/análogos & derivados , Rifampin/farmacología , Estreptomicina/farmacología
9.
Artículo en Inglés | MEDLINE | ID: mdl-30745396

RESUMEN

The potent antituberculosis activity and long half-life of bedaquiline make it an attractive candidate for use in long-acting/extended-release formulations for the treatment of latent tuberculosis infection (LTBI). Our objective was to evaluate a long-acting injectable (LAI) bedaquiline formulation in a validated paucibacillary mouse model of LTBI. Following immunization with Mycobacterium bovis rBCG30, BALB/c mice were challenged by aerosol infection with M. tuberculosis H37Rv. Treatment began 13 weeks after challenge infection with one of the following regimens: an untreated negative-control regimen; positive-control regimens of daily rifampin (10 mg/kg of body weight), once-weekly rifapentine (15 mg/kg) and isoniazid (50 mg/kg), or daily bedaquiline (25 mg/kg); test regimens of one, two, or three monthly doses of LAI bedaquiline at 160 mg/dose (BLAI-160); and test regimens of daily bedaquiline at 2.67 mg/kg (B2.67), 5.33 mg/kg (B5.33), or 8 mg/kg (B8) to deliver the same total amount of bedaquiline as one, two, or three doses of BLAI-160, respectively. All drugs were administered orally, except for BLAI-160 (intramuscular injection). The primary outcome was the decline in M. tuberculosis lung CFU counts during 12 weeks of treatment. The negative- and positive-control regimens performed as expected. One, two, and three doses of BLAI-160 resulted in decreases of 2.9, 3.2, and 3.5 log10 CFU/lung, respectively, by week 12. Daily oral dosing with B2.67, B5.33, and B8 decreased lung CFU counts by 1.6, 2.8, and 4.1 log10, respectively. One dose of BLAI-160 exhibited activity for at least 12 weeks. The sustained activity of BLAI-160 indicates that it shows promise as a short-course LTBI treatment requiring few patient encounters to ensure treatment completion.


Asunto(s)
Antituberculosos/farmacología , Diarilquinolinas/farmacología , Tuberculosis Latente/tratamiento farmacológico , Administración Oral , Animales , Antituberculosos/administración & dosificación , Antituberculosos/farmacocinética , Diarilquinolinas/administración & dosificación , Diarilquinolinas/farmacocinética , Modelos Animales de Enfermedad , Femenino , Inyecciones Intramusculares , Masculino , Ratones , Ratones Endogámicos BALB C , Pruebas de Sensibilidad Microbiana , Mycobacterium tuberculosis/efectos de los fármacos
10.
Artículo en Inglés | MEDLINE | ID: mdl-29735562

RESUMEN

The antileprosy drug clofazimine was recently repurposed as part of a newly endorsed short-course regimen for multidrug-resistant tuberculosis. It also enables significant treatment shortening when added to the first-line regimen for drug-susceptible tuberculosis in a mouse model. However, clofazimine causes dose- and duration-dependent skin discoloration in patients, and the optimal clofazimine dosing strategy in the context of the first-line regimen is unknown. We utilized a well-established mouse model to systematically address the impacts of duration, dose, and companion drugs on the treatment-shortening activity of clofazimine in the first-line regimen. In all studies, the primary outcome was relapse-free cure (culture-negative lungs) 6 months after stopping treatment, and the secondary outcome was bactericidal activity, i.e., the decline in the lung bacterial burden during treatment. Our findings indicate that clofazimine activity is most potent when coadministered with first-line drugs continuously throughout treatment and that equivalent treatment-shortening results are obtained with half the dose commonly used in mice. However, our studies also suggest that clofazimine at low exposures may have negative impacts on treatment outcomes, an effect that was evident only after the first 3 months of treatment. These data provide a sound evidence base to inform clofazimine dosing strategies to optimize the antituberculosis effect while minimizing skin discoloration. The results also underscore the importance of conducting long-term studies to allow the full evaluation of drugs administered in combination over long durations.


Asunto(s)
Antituberculosos/uso terapéutico , Clofazimina/uso terapéutico , Tuberculosis/tratamiento farmacológico , Animales , Modelos Animales de Enfermedad , Femenino , Ratones , Ratones Endogámicos BALB C , Distribución Aleatoria , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico
11.
Proc Natl Acad Sci U S A ; 112(3): 869-74, 2015 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-25561537

RESUMEN

A key drug for the treatment of leprosy, clofazimine has recently been associated with highly effective and significantly shortened regimens for the treatment of multidrug-resistant tuberculosis (TB). Consequently, we hypothesized that clofazimine may also shorten the duration of treatment for drug-susceptible TB. We conducted a controlled trial in the mouse model of TB chemotherapy comparing the activity of the 6-mo standard regimen for TB treatment, i.e., 2 mo of daily rifampin, isoniazid, pyrazinamide, and ethambutol followed by 4 mo of rifampin and isoniazid, with a 4-mo clofazimine-containing regimen: 2 mo of daily rifampin, isoniazid, pyrazinamide, and clofazimine followed by 2 mo of rifampin, isoniazid, and clofazimine. Treatment efficacy was assessed on the basis of Mycobacterium tuberculosis colony counts in the lungs and spleens during treatment and on the proportion of mice with culture-positive relapse 6 mo after treatment cessation. No additive effect of clofazimine was observed after the first week of treatment, but, by the second week of treatment, the colony counts were significantly lower in the clofazimine-treated mice than in the mice receiving the standard regimen. Lung culture conversion was obtained after 3 and 5 mo in mice treated with the clofazimine-containing and standard regimens, respectively, and relapse-free cure was obtained after 3 and 6 mo of treatment with the clofazimine-containing and standard regimens, respectively. Thus, clofazimine is a promising anti-TB drug with the potential to shorten the duration of TB chemotherapy by at least half (3 mo vs. 6 mo) in the mouse model of TB.


Asunto(s)
Antituberculosos/uso terapéutico , Clofazimina/uso terapéutico , Tuberculosis/tratamiento farmacológico , Animales , Modelos Animales de Enfermedad , Femenino , Ratones , Ratones Endogámicos BALB C
12.
Artículo en Inglés | MEDLINE | ID: mdl-28630203

RESUMEN

New regimens based on 2 or more novel agents are sought to shorten or to simplify treatment of tuberculosis (TB), including drug-resistant forms. Prior studies showed that the novel combinations of bedaquiline (BDQ) plus pretomanid (PMD) plus pyrazinamide (PZA) and PMD plus moxifloxacin (MXF) plus PZA shortened the treatment duration necessary to prevent relapse by 2 to 3 months and 1 to 2 months, respectively, compared with the current first-line regimen, in a murine TB model. These 3-drug combinations are now being studied in clinical trials. Here, the 4-drug combination of BDQ+PMD+MXF+PZA was compared to its 3-drug component regimens and different treatment durations of PZA and MXF were explored, to identify the optimal regimens and treatment times and to estimate the likelihood of success against drug-resistant strains. BDQ+PMD+MXF+PZA rendered all mice relapse-free after 2 months of treatment. PZA administration could be discontinued after the first month of treatment without worsening outcomes, whereas the absence of MXF, PZA, or BDQ administration from the beginning necessitated approximately 0.5, 1, or 2 months, respectively, of additional treatment to attain the same outcome.


Asunto(s)
Antituberculosos/farmacología , Diarilquinolinas/farmacología , Fluoroquinolonas/farmacología , Nitroimidazoles/farmacología , Pirazinamida/farmacología , Tuberculosis Pulmonar/tratamiento farmacológico , Animales , Modelos Animales de Enfermedad , Femenino , Ratones , Ratones Endogámicos BALB C , Moxifloxacino , Mycobacterium tuberculosis/efectos de los fármacos , Tuberculosis Pulmonar/microbiología
13.
Antimicrob Agents Chemother ; 60(8): 4590-9, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27185800

RESUMEN

The novel ATP synthase inhibitor bedaquiline recently received accelerated approval for treatment of multidrug-resistant tuberculosis and is currently being studied as a component of novel treatment-shortening regimens for drug-susceptible and multidrug-resistant tuberculosis. In a limited number of bedaquiline-treated patients reported to date, ≥4-fold upward shifts in bedaquiline MIC during treatment have been attributed to non-target-based mutations in Rv0678 that putatively increase bedaquiline efflux through the MmpS5-MmpL5 pump. These mutations also confer low-level clofazimine resistance, presumably by a similar mechanism. Here, we describe a new non-target-based determinant of low-level bedaquiline and clofazimine cross-resistance in Mycobacterium tuberculosis: loss-of-function mutations in pepQ (Rv2535c), which corresponds to a putative Xaa-Pro aminopeptidase. pepQ mutants were selected in mice by treatment with clinically relevant doses of bedaquiline, with or without clofazimine, and were shown to have bedaquiline and clofazimine MICs 4 times higher than those for the parental H37Rv strain. Coincubation with efflux inhibitors verapamil and reserpine lowered bedaquiline MICs against both mutant and parent strains to a level below the MIC against H37Rv in the absence of efflux pump inhibitors. However, quantitative PCR (qPCR) revealed no significant differences in expression of Rv0678, mmpS5, or mmpL5 between mutant and parent strains. Complementation of a pepQ mutant with the wild-type gene restored susceptibility, indicating that loss of PepQ function is sufficient for reduced susceptibility both in vitro and in mice. Although the mechanism by which mutations in pepQ confer bedaquiline and clofazimine cross-resistance remains unclear, these results may have clinical implications and warrant further evaluation of clinical isolates with reduced susceptibility to either drug for mutations in this gene.


Asunto(s)
Antituberculosos/uso terapéutico , Clofazimina/uso terapéutico , Diarilquinolinas/uso terapéutico , Mycobacterium tuberculosis/efectos de los fármacos , Animales , Femenino , Ratones , Ratones Endogámicos BALB C , Pruebas de Sensibilidad Microbiana , Mutación/genética , Mycobacterium tuberculosis/genética , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Tuberculosis Resistente a Múltiples Medicamentos/metabolismo
14.
Antimicrob Agents Chemother ; 60(1): 270-7, 2016 01.
Artículo en Inglés | MEDLINE | ID: mdl-26503656

RESUMEN

New regimens based on two or more novel agents are sought to shorten or simplify treatment of tuberculosis (TB). Pretomanid (PMD) is a nitroimidazole in phase 3 trials that has significant bactericidal activity alone and in combination with bedaquiline (BDQ) and/or pyrazinamide (PZA). We previously showed that the novel combination of BDQ+PMD plus the oxazolidinone sutezolid (SZD) had sterilizing activity superior to that of the first-line regimen in a murine model of TB. The present experiments compared the activity of different oxazolidinones in combination with BDQ+PMD with or without PZA in the same model. The 3-drug regimen of BDQ+PMD plus linezolid (LZD) had sterilizing activity approaching that of BDQ+PMD+SZD and superior to that of the first-line regimen. The addition of PZA further enhanced activity. Reducing the duration of LZD to 1 month did not significantly affect the activity of the regimen. Halving the LZD dose or replacing LZD with RWJ-416457 modestly reduced activity over the first month but not after 2 months. AZD5847 and tedizolid also increased the bactericidal activity of BDQ+PMD, but they were less effective than the other oxazolidinones. These results provide optimism for safe, short-course oral regimens for drug-resistant TB that may also be superior to the current first-line regimen for drug-susceptible TB.


Asunto(s)
Antituberculosos/farmacología , Diarilquinolinas/farmacología , Nitroimidazoles/farmacología , Oxazolidinonas/farmacología , Tuberculosis Pulmonar/tratamiento farmacológico , Animales , Carga Bacteriana , Modelos Animales de Enfermedad , Esquema de Medicación , Combinación de Medicamentos , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Sinergismo Farmacológico , Femenino , Linezolid/farmacología , Pulmón/efectos de los fármacos , Pulmón/microbiología , Ratones , Ratones Endogámicos BALB C , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/crecimiento & desarrollo , Organofosfatos/farmacología , Oxazoles/farmacología , Pirazinamida/farmacología , Factores de Tiempo , Resultado del Tratamiento , Tuberculosis Pulmonar/microbiología
15.
Antimicrob Agents Chemother ; 59(1): 673-6, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25331694

RESUMEN

Bedaquiline is a newly approved drug for the treatment of multidrug-resistant tuberculosis, but there are concerns about its safety in humans. We found that the coadministration of verapamil with subinhibitory doses of bedaquiline gave the same bactericidal effect in mice as did the full human bioequivalent bedaquiline dosing. Adding verapamil to bedaquiline monotherapy also protected against the development of resistant mutants in vivo. The adjunctive use of verapamil may permit use of lower doses of bedaquiline to be used and thereby reduce its dose-related toxicities in tuberculosis patients.


Asunto(s)
Antituberculosos/uso terapéutico , Bloqueadores de los Canales de Calcio/uso terapéutico , Diarilquinolinas/uso terapéutico , Mycobacterium tuberculosis/efectos de los fármacos , Tuberculosis Pulmonar/tratamiento farmacológico , Verapamilo/uso terapéutico , Animales , Antituberculosos/administración & dosificación , Antituberculosos/farmacología , Bloqueadores de los Canales de Calcio/administración & dosificación , Bloqueadores de los Canales de Calcio/farmacología , Diarilquinolinas/administración & dosificación , Diarilquinolinas/farmacología , Modelos Animales de Enfermedad , Sinergismo Farmacológico , Quimioterapia Combinada , Femenino , Pulmón/microbiología , Ratones , Ratones Endogámicos BALB C , Tuberculosis Pulmonar/microbiología , Verapamilo/administración & dosificación , Verapamilo/farmacología
16.
Antimicrob Agents Chemother ; 59(4): 2129-35, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25624335

RESUMEN

The Mycobacterium avium complex is the most common cause of nontuberculous mycobacterial lung disease worldwide; yet, an optimal treatment regimen for M. avium complex infection has not been established. Clarithromycin is accepted as the cornerstone drug for treatment of M. avium lung disease; however, good model systems, especially animal models, are needed to evaluate the most effective companion drugs. We performed a series of experiments to evaluate and use different mouse models (comparing BALB/c, C57BL/6, nude, and beige mice) of M. avium infection and to assess the anti-M. avium activity of single and combination drug regimens, in vitro, ex vivo, and in mice. In vitro, clarithromycin and moxifloxacin were most active against M. avium, and no antagonism was observed between these two drugs. Nude mice were more susceptible to M. avium infection than the other mouse strains tested, but the impact of treatment was most clearly seen in M. avium-infected BALB/c mice. The combination of clarithromycin-ethambutol-rifampin was more effective in all infected mice than moxifloxacin-ethambutol-rifampin; the addition of moxifloxacin to the clarithromycin-containing regimen did not increase treatment efficacy. Clarithromycin-containing regimens are the most effective for M. avium infection; substitution of moxifloxacin for clarithromycin had a negative impact on treatment efficacy.


Asunto(s)
Antibacterianos/uso terapéutico , Complejo Mycobacterium avium/efectos de los fármacos , Infección por Mycobacterium avium-intracellulare/tratamiento farmacológico , Infección por Mycobacterium avium-intracellulare/microbiología , Animales , Antibacterianos/farmacología , Recuento de Colonia Microbiana , Combinación de Medicamentos , Sinergismo Farmacológico , Femenino , Pulmón/patología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Desnudos , Pruebas de Sensibilidad Microbiana , Infección por Mycobacterium avium-intracellulare/patología , Especificidad de la Especie
17.
Proc Natl Acad Sci U S A ; 109(37): 15001-5, 2012 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-22927424

RESUMEN

Standard tuberculosis (TB) treatment includes an initial regimen containing drugs that are both rapidly bactericidal (isoniazid) and sterilizing (rifampin and pyrazinamide), and ethambutol to help prevent the emergence of drug resistance. Antagonism between isoniazid and pyrazinamide has been demonstrated in a TB treatment mouse model. Because isoniazid's bactericidal activity is greatest during the initial two treatment days, we hypothesized that removing isoniazid after the second day would increase the effectiveness of the standard regimen. To test this hypothesis, we developed a mouse model to measure the early bactericidal activity (EBA) of drug regimens designed to analyze the essentiality of both isoniazid and pyrazinamide during the first 14 d of therapy. Our results clearly indicate that discontinuation of isoniazid after the second day of treatment increases the EBA of standard therapy in the mouse model, whereas omitting pyrazinamide during the first 14 d was detrimental. Substitution of moxifloxacin for isoniazid on day 3 did not increase the EBA compared with only removing isoniazid after day 2. Our data show that a mouse model can be used to analyze the EBA of TB drugs, and our findings support pursuing clinical trials to evaluate the possible benefit of removing isoniazid after the first 2 treatment days.


Asunto(s)
Antituberculosos/farmacología , Modelos Animales de Enfermedad , Isoniazida/farmacología , Modelos Biológicos , Pirazinamida/farmacología , Tuberculosis/tratamiento farmacológico , Análisis de Varianza , Animales , Antituberculosos/uso terapéutico , Recuento de Colonia Microbiana , Relación Dosis-Respuesta a Droga , Antagonismo de Drogas , Quimioterapia Combinada , Intervención Médica Temprana , Isoniazida/uso terapéutico , Ratones , Pirazinamida/uso terapéutico , Resultado del Tratamiento
18.
Am J Respir Crit Care Med ; 188(5): 600-7, 2013 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-23805786

RESUMEN

RATIONALE: A major priority in tuberculosis (TB) is to reduce effective treatment times and emergence of resistance. Recent studies in macrophages and zebrafish show that inhibition of mycobacterial efflux pumps with verapamil reduces the bacterial drug tolerance and may enhance drug efficacy. OBJECTIVES: Using mice, a mammalian model known to predict human treatment responses, and selecting conservative human bioequivalent doses, we tested verapamil as an adjunctive drug together with standard TB chemotherapy. As verapamil is a substrate for CYP3A4, which is induced by rifampin, we evaluated the pharmacokinetic/pharmacodynamic relationships of verapamil and rifampin coadministration in mice. METHODS: Using doses that achieve human bioequivalent levels matched to those of standard verapamil, but lower than those of extended release verapamil, we evaluated the activity of verapamil added to standard chemotherapy in both C3HeB/FeJ (which produce necrotic granulomas) and the wild-type background C3H/HeJ mouse strains. Relapse rates were assessed after 16, 20, and 24 weeks of treatment in mice. MEASUREMENTS AND MAIN RESULTS: We determined that a dose adjustment of verapamil by 1.5-fold is required to compensate for concurrent use of rifampin during TB treatment. We found that standard TB chemotherapy plus verapamil accelerates bacterial clearance in C3HeB/FeJ mice with near sterilization, and significantly lowers relapse rates in just 4 months of treatment when compared with mice receiving standard therapy alone. CONCLUSIONS: These data demonstrate treatment shortening by verapamil adjunctive therapy in mice, and strongly support further study of verapamil and other efflux pump inhibitors in human TB.


Asunto(s)
Antituberculosos/uso terapéutico , Bloqueadores de los Canales de Calcio/uso terapéutico , Rifampin/uso terapéutico , Tuberculosis Pulmonar/tratamiento farmacológico , Verapamilo/uso terapéutico , Adyuvantes Farmacéuticos/administración & dosificación , Adyuvantes Farmacéuticos/uso terapéutico , Animales , Antituberculosos/administración & dosificación , Bloqueadores de los Canales de Calcio/administración & dosificación , Quimioterapia Combinada , Femenino , Ratones , Ratones Endogámicos C3H , Mycobacterium tuberculosis/efectos de los fármacos , Recurrencia , Rifampin/administración & dosificación , Factores de Tiempo , Verapamilo/administración & dosificación
19.
Am J Respir Crit Care Med ; 188(1): 97-102, 2013 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-23593945

RESUMEN

RATIONALE: High-dose levofloxacin (L) (1,000 mg) was as active as moxifloxacin (M) (400 mg) in an early bactericidal activity trial, suggesting these fluoroquinolones could be used interchangeably. Whether pyrazinamide (Z) contributes sterilizing activity beyond the first 2 months in fluoroquinolone-containing second-line regimens remains unknown. OBJECTIVES: We compared the efficacy of M and high-dose L alone or in combination with ethionamide (Et), amikacin (A), and Z given for 2 or 7 months. METHODS: A pharmacokinetic study was performed to determine the L dose equivalent to 1,000 mg in humans. Treatment started 2 weeks after aerosol infection with Mycobacterium tuberculosis H37Rv. Mice received M or L alone or in combination with 2 months of EtZA followed by 5 months of Et or EtZ. MEASUREMENTS AND MAIN RESULTS: After 2 months of treatment, lung colony-forming unit (CFU) counts were similar in mice receiving either fluoroquinolone alone, but, after 4 and 5 months, CFU counts were 2 log10 lower in mice receiving M. Mice receiving 2MEtZA/3MEt and 2LEtZA/3LEt had 1.0 and 2.7 log10 lung CFUs, respectively. When Z was given throughout, both regimens rendered mice culture negative by 5 months, and most mice did not relapse after 7 months of treatment, with fewer relapses observed in the M group after 6 and 7 months of treatment. CONCLUSIONS: In murine tuberculosis, M had superior efficacy compared with L despite lower serum drug exposures and may remain the fluoroquinolone of choice for second-line regimens. Z contributed substantial sterilizing activity beyond 2 months in fluoroquinolone-containing second-line regimens, largely compensating for L's weaker activity.


Asunto(s)
Antibacterianos/administración & dosificación , Antituberculosos/administración & dosificación , Compuestos Aza/administración & dosificación , Levofloxacino , Ofloxacino/uso terapéutico , Pirazinamida/administración & dosificación , Quinolinas/administración & dosificación , Tuberculosis/tratamiento farmacológico , Análisis de Varianza , Animales , Antibacterianos/farmacocinética , Antituberculosos/farmacocinética , Compuestos Aza/farmacocinética , Modelos Animales de Enfermedad , Esquema de Medicación , Quimioterapia Combinada/métodos , Femenino , Fluoroquinolonas , Ratones , Ratones Endogámicos BALB C , Moxifloxacino , Ofloxacino/farmacocinética , Pirazinamida/farmacocinética , Quinolinas/farmacocinética , Resultado del Tratamiento
20.
Am J Respir Crit Care Med ; 188(5): 608-12, 2013 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-23822735

RESUMEN

RATIONALE: Although observational studies suggest that clofazimine-containing regimens are highly active against drug-resistant tuberculosis, the contribution of clofazimine for the treatment of this disease has never been systematically evaluated. OBJECTIVES: Our goal was to directly compare the activity of a standard second-line drug regimen with or without the addition of clofazimine in a mouse model of multidrug-resistant tuberculosis. Our comparative outcomes included time to culture conversion in the mouse lungs and the percentage of relapses after treatment cessation. METHODS: Mice were aerosol-infected with an isoniazid-resistant (as a surrogate of multidrug-resistant) strain of Mycobacterium tuberculosis. Treatment, which was administered for 5 to 9 months, was initiated 2 weeks after infection and comprised the following second-line regimen: daily (5 d/wk) moxifloxacin, ethambutol, and pyrazinamide, supplemented with amikacin during the first 2 months. One-half of the mice also received daily clofazimine. The decline in lung bacterial load was assessed monthly using charcoal-containing agar to reduce clofazimine carryover. Relapse was assessed 6 months after treatment cessation. MEASUREMENTS AND MAIN RESULTS: After 2 months, the bacillary load in lungs was reduced from 9.74 log10 at baseline to 3.61 and 4.68 in mice treated with or without clofazimine, respectively (P < 0.001). Mice treated with clofazimine were culture-negative after 5 months, whereas all mice treated without clofazimine remained heavily culture-positive for the entire 9 months of the study. The relapse rate was 7% among mice treated with clofazimine for 8 to 9 months. CONCLUSIONS: The clofazimine contribution was substantial in these experimental conditions.


Asunto(s)
Antituberculosos/uso terapéutico , Clofazimina/uso terapéutico , Tuberculosis Pulmonar/tratamiento farmacológico , Animales , Farmacorresistencia Bacteriana Múltiple , Femenino , Pulmón/microbiología , Ratones , Ratones Endogámicos BALB C , Pruebas de Sensibilidad Microbiana , Mycobacterium tuberculosis/efectos de los fármacos , Recurrencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA