Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
J Neurosci ; 44(1)2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-37949656

RESUMEN

Muscle spasms are common in chronic spinal cord injury (SCI), posing challenges to rehabilitation and daily activities. Pharmacological management of spasms mostly targets suppression of excitatory inputs, an approach known to hinder motor recovery. To identify better targets, we investigated changes in inhibitory and excitatory synaptic inputs to motoneurons as well as motoneuron excitability in chronic SCI. We induced either a complete or incomplete SCI in adult mice of either sex and divided those with incomplete injury into low or high functional recovery groups. Their sacrocaudal spinal cords were then extracted and used to study plasticity below injury, with tissue from naive animals as a control. Electrical stimulation of the dorsal roots elicited spasm-like activity in preparations of chronic severe SCI but not in the control. To evaluate overall synaptic inhibition activated by sensory stimulation, we measured the rate-dependent depression of spinal root reflexes. We found inhibitory inputs to be impaired in chronic injury models. When synaptic inhibition was blocked pharmacologically, all preparations became clearly spastic, even the control. However, preparations with chronic injuries generated longer spasms than control. We then measured excitatory postsynaptic currents (EPSCs) in motoneurons during sensory-evoked spasms. The data showed no difference in the amplitude of EPSCs or their conductance among animal groups. Nonetheless, we found that motoneuron persistent inward currents activated by the EPSCs were increased in chronic SCI. These findings suggest that changes in motoneuron excitability and synaptic inhibition, rather than excitation, contribute to spasms and are better suited for more effective therapeutic interventions.Significance Statement Neural plasticity following spinal cord injury is crucial for recovery of motor function. Unfortunately, this process is blemished by maladaptive changes that can cause muscle spasms. Pharmacological alleviation of spasms without compromising the recovery of motor function has proven to be challenging. Here, we investigated changes in fundamental spinal mechanisms that can cause spasms post-injury. Our data suggest that the current management strategy for spasms is misdirected toward suppressing excitatory inputs, a mechanism that we found unaltered after injury, which can lead to further motor weakness. Instead, this study shows that more promising approaches might involve restoring synaptic inhibition or modulating motoneuron excitability.


Asunto(s)
Traumatismos de la Médula Espinal , Ratones , Animales , Traumatismos de la Médula Espinal/complicaciones , Neuronas Motoras/fisiología , Médula Espinal , Espasmo/etiología , Espasticidad Muscular/etiología
2.
Physiology (Bethesda) ; 34(1): 5-13, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30540233

RESUMEN

Appropriate scaling of motor output from mouse to humans is essential. The motoneurons that generate all motor output are, however, very different in rodents compared with humans, being smaller and much more excitable. In contrast, feline motoneurons are more similar to those in humans. These scaling differences need to be taken into account for the use of rodents for translational studies of motor output.


Asunto(s)
Neuronas Motoras/fisiología , Animales , Humanos , Ratones , Movimiento/fisiología , Músculo Esquelético/metabolismo
3.
J Neurophysiol ; 123(5): 1657-1670, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32208883

RESUMEN

The loss of descending serotonin (5-HT) to the spinal cord contributes to muscle spasms in chronic spinal cord injury (SCI). Hyperexcitable motoneurons receive long-lasting excitatory postsynaptic potentials (EPSPs), which activate their persistent inward currents to drive muscle spasms. Deep dorsal horn (DDH) neurons with bursting behavior could be involved in triggering the EPSPs due to loss of inhibition in the chronically 5-HT-deprived spinal cord. Previously, in an acutely transected preparation, we found that bursting DDH neurons were affected by administration of the 5-HT1B/1D receptor agonist zolmitriptan, which suppressed their bursts, and by N-methyl-d-aspartate (NMDA), which enhanced their bursting behavior. Nonbursting DDH neurons were not influenced by these agents. In the present study, we investigate the firing characteristics of bursting DDH neurons following chronic spinal transection at T10 level in adult mice and examine the effects of replacing lost endogenous 5-HT with zolmitriptan. Terminal experiments using our in vitro preparation of the sacral cord were carried out ~10 wk postransection. Compared with the acute spinal stage of our previous study, DDH neurons in the chronic stage became more responsive to dorsal root stimulation, with burst duration doubling with chronic injury. The suppressive effects of zolmitriptan were stronger overall, but the facilitative effects of NMDA were weaker. In addition, the onset of DDH neuron activity preceded ventral root output and the firing rates of DDH interneurons correlated with the integrated long-lasting ventral root output. These results support a contribution of the bursting DDH neurons to muscle spasms following SCI and inhibition by 5-HT.NEW & NOTEWORTHY We investigate the firing characteristics of bursting deep dorsal horn (DDH) neurons following chronic spinal transection. DDH neurons in the chronic stage are different from those in the acute stage as noted by their increase in excitability overall and their differing responses serotonin (5-HT) and N-methyl-d-aspartate (NMDA) receptor agonists. Also, there is a strong relationship between DDH neuron activity and ventral root output. These results support a contribution of the bursting DDH neurons to muscle spasms following chronic spinal cord injury (SCI).


Asunto(s)
Potenciales de Acción/fisiología , Potenciales Postsinápticos Excitadores/fisiología , Interneuronas/fisiología , Neuronas Motoras/fisiología , Células del Asta Posterior/fisiología , Agonistas del Receptor de Serotonina 5-HT1/farmacología , Serotonina/metabolismo , Espasmo , Traumatismos de la Médula Espinal , Raíces Nerviosas Espinales , Potenciales de Acción/efectos de los fármacos , Animales , Enfermedad Crónica , Modelos Animales de Enfermedad , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Interneuronas/efectos de los fármacos , Interneuronas/metabolismo , Ratones , Ratones Endogámicos C57BL , Neuronas Motoras/efectos de los fármacos , Neuronas Motoras/metabolismo , N-Metilaspartato/farmacología , Oxazolidinonas/farmacología , Células del Asta Posterior/efectos de los fármacos , Células del Asta Posterior/metabolismo , Espasmo/metabolismo , Espasmo/fisiopatología , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/fisiopatología , Raíces Nerviosas Espinales/efectos de los fármacos , Raíces Nerviosas Espinales/metabolismo , Raíces Nerviosas Espinales/fisiopatología , Triptaminas/farmacología
4.
J Physiol ; 595(15): 5387-5400, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28543166

RESUMEN

KEY POINTS: The present study demonstrates that electromyograms (EMGs) obtained during locomotor activity in mice were effective for identification of early physiological markers of amyotrophic lateral sclerosis (ALS). These measures could be used to evaluate therapeutic intervention strategies in animal models of ALS. Several parameters of locomotor activity were shifted early in the disease time course in SOD1G93A mice, especially when the treadmill was inclined, including intermuscular phase, burst skew and amplitude of the locomotor bursts. The results of the present study indicate that early compensatory changes may be taking place within the neural network controlling locomotor activity, including spinal interneurons. Locomotor EMGs could have potential use as a clinical diagnostic tool. ABSTRACT: To improve our understanding of early disease mechanisms and to identify reliable biomarkers of amyotrophic lateral sclerosis (ALS), a progressive neurodegenerative disease, we measured electromyogram (EMG) activity in hind limb muscles of SOD1G93A mice. By contrast to clinical diagnostic measures using EMGs, which are performed on quiescent patients, we monitored activity during treadmill running aiming to detect presymptomatic changes in motor patterning. Chronic EMG electrodes were implanted into vastus lateralis, biceps femoris posterior, lateral gastrocnemius and tibialis anterior in mice from postnatal day 55 to 100 and the results obtained were assessed using linear mixed models. We evaluated differences in parameters related to EMG amplitude (peak and area) and timing (phase and skew, a measure of burst shape) when animals ran on level and inclined treadmills. There were significant changes in both the timing of activity and the amplitude of EMG bursts in SOD1G93A mice. Significant differences between wild-type and SOD1G93A mice were mainly observed when animals locomoted on inclined treadmills. All muscles had significant effects of mutation that were independent of age. These novel results indicate (i) locomotor EMG activity might be an early measure of disease onset; (ii) alterations in locomotor patterning may reflect changes in neuronal drive and compensation at the network level including altered activity of spinal interneurons; and (iii) the increased power output necessary on an inclined treadmill was important in revealing altered activity in SOD1G93A mice.


Asunto(s)
Músculo Esquelético/fisiología , Carrera/fisiología , Superóxido Dismutasa-1/fisiología , Esclerosis Amiotrófica Lateral , Animales , Electromiografía , Femenino , Masculino , Ratones Transgénicos , Neuronas Motoras/fisiología , Superóxido Dismutasa-1/genética
5.
J Neurophysiol ; 118(1): 520-531, 2017 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28356467

RESUMEN

Motoneurons are unique in being the only neurons in the CNS whose firing patterns can be easily recorded in human subjects. This is because of the one-to-one relationship between the motoneuron and muscle cell behavior. It has long been appreciated that the connection of motoneurons to their muscle fibers allows their action potentials to be amplified and recorded, but only recently has it become possible to simultaneously record the firing pattern of many motoneurons via array electrodes placed on the skin. These firing patterns contain detailed information about the synaptic organization of motor commands to the motoneurons. This review focuses on parameters in these firing patterns that are directly linked to specific features of this organization. It is now well established that motor commands consist of three components, excitation, inhibition, and neuromodulation; the importance of the third component has become increasingly evident. Firing parameters linked to each of the three components are discussed, along with consideration of potential limitations in their utility for understanding the underlying organization of motor commands. Future work based on realistic computer simulations of motoneurons may allow quantitative "reverse engineering" of human motoneuron firing patterns to provide good estimates of the relative amplitudes and temporal patterns of all three components of motor commands.


Asunto(s)
Potenciales de Acción , Actividad Motora/fisiología , Neuronas Motoras/fisiología , Sinapsis/fisiología , Potenciales de Acción/fisiología , Humanos , Movimiento/fisiología , Músculo Esquelético/fisiología , Vías Nerviosas/fisiología
6.
J Neurophysiol ; 116(4): 1644-1653, 2016 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-27486104

RESUMEN

Spinal cord injury (SCI) results in a loss of serotonin (5-HT) to the spinal cord and a loss of inhibition to deep dorsal horn (DDH) neurons, which produces an exaggerated excitatory drive to motoneurons. The mechanism of this excitatory drive could involve the DDH neurons triggering long excitatory postsynaptic potentials in motoneurons, which may ultimately drive muscle spasms. Modifying the activity of DDH neurons with drugs such as NMDA or the 5-HT1B/1D receptor agonist zolmitriptan could have a large effect on motoneuron activity and, therefore, on muscle spasms. In this study, we characterize the firing properties of DDH neurons after acute spinal transection in adult mice during administration of zolmitriptan and NMDA, using the in vitro sacral cord preparation and extracellular electrophysiology. DDH neurons can be categorized into three major types with distinct evoked and spontaneous firing characteristics: burst (bursting), simple (single spiking), and tonic (spontaneously tonic firing) neurons. The burst neurons likely contribute to muscle spasm mechanisms because of their bursting behavior. Only the burst neurons show significant changes in their firing characteristics during zolmitriptan and NMDA administration. Zolmitriptan suppresses the burst neurons by reducing their evoked spikes, burst duration, and spontaneous firing rate. Conversely, NMDA facilitates them by enhancing their burst duration and spontaneous firing rate. These results suggest that zolmitriptan may exert its antispastic effect on the burst neurons via activation of 5-HT1B/1D receptors, whereas activation of NMDA receptors may facilitate the burst neurons in contributing to muscle spasm mechanisms following SCI.


Asunto(s)
Potenciales de Acción/efectos de los fármacos , Agonistas de Aminoácidos Excitadores/farmacología , Interneuronas/efectos de los fármacos , Células del Asta Posterior/efectos de los fármacos , Agonistas del Receptor de Serotonina 5-HT1/farmacología , Traumatismos de la Médula Espinal/tratamiento farmacológico , Potenciales de Acción/fisiología , Animales , Modelos Animales de Enfermedad , Interneuronas/fisiología , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Microelectrodos , N-Metilaspartato/farmacología , Oxazolidinonas/farmacología , Células del Asta Posterior/fisiología , Receptor de Serotonina 5-HT1B/metabolismo , Receptor de Serotonina 5-HT1D/metabolismo , Receptores de N-Metil-D-Aspartato/agonistas , Receptores de N-Metil-D-Aspartato/metabolismo , Sacro , Traumatismos de la Médula Espinal/fisiopatología , Técnicas de Cultivo de Tejidos , Triptaminas/farmacología
7.
J Neurophysiol ; 112(3): 543-51, 2014 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-24805075

RESUMEN

The mouse is essential for genetic studies of motor function in both normal and pathological states. Thus it is important to consider whether the structure of motor output from the mouse is in fact analogous to that recorded in other animals. There is a striking difference in the basic electrical properties of mouse motoneurons compared with those in rats, cats, and humans. The firing evoked by injected currents produces a unique frequency-current (F-I) function that emphasizes recruitment of motor units at their maximum force. These F-I functions, however, were measured in anesthetized preparations that lacked two key components of normal synaptic input: high levels of synaptic noise and neuromodulatory inputs. Recent studies suggest that the alterations in the F-I function due to these two components are essential for recreating firing behavior of motor units in human subjects. In this study we provide the first data on firing patterns of motor units in the awake mouse, focusing on steady output in quiet stance. The resulting firing patterns did not match the predictions from the mouse F-I behaviors but instead revealed rate modulation across a remarkably wide range (10-60 Hz). The low end of the firing range may be due to changes in the F-I relation induced by synaptic noise and neuromodulatory inputs. The high end of the range may indicate that, unlike other species, quiet standing in the mouse involves recruitment of relatively fast-twitch motor units.


Asunto(s)
Neuronas Motoras/fisiología , Postura/fisiología , Potenciales de Acción , Animales , Electrodos Implantados , Electromiografía , Femenino , Ratones , Músculo Esquelético/fisiología , Descanso/fisiología
9.
J Neurosci ; 30(5): 1839-55, 2010 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-20130193

RESUMEN

Astrogliosis following spinal cord injury (SCI) involves an early hypertrophic response that is beneficial and a subsequent formation of a dense scar. We investigated the role of bone morphogenetic protein (BMP) signaling in gliosis after SCI and find that BMPR1a and BMPR1b signaling exerts opposing effects on hypertrophy. Conditional ablation of BMPR1a from glial fibrillary acidic protein (GFAP)-expressing cells leads to defective astrocytic hypertrophy, increased infiltration by inflammatory cells, and reduced axon density. BMPR1b-null mice conversely develop "hyperactive" reactive astrocytes and consequently have smaller lesion volumes. The effects of ablation of either receptor are reversed in the double knock-out animals. These findings indicate that BMPR1a and BMPR1b exert directly opposing effects on the initial reactive astrocytic hypertrophy. Also, BMPR1b knock-out mice have an attenuated glial scar in the chronic stages following injury, suggesting that it has a greater role in glial scar progression. To elucidate the differing roles of the two receptors in astrocytes, we examined the effects of ablation of either receptor in serum-derived astrocytes in vitro. We find that the two receptors exert opposing effects on the posttranscriptional regulation of astrocytic microRNA-21. Further, overexpression of microRNA-21 in wild-type serum-derived astrocytes causes a dramatic reduction in cell size accompanied by reduction in GFAP levels. Hence, regulation of microRNA-21 by BMP signaling provides a novel mechanism for regulation of astrocytic size. Targeting specific BMPR subunits for therapeutic purposes may thus provide an approach for manipulating gliosis and enhancing functional outcomes after SCI.


Asunto(s)
Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/metabolismo , Gliosis/fisiopatología , Traumatismos de la Médula Espinal/fisiopatología , Animales , Astrocitos/metabolismo , Axones/ultraestructura , Células Cultivadas , Femenino , Gliosis/patología , Hiperplasia/patología , Hiperplasia/fisiopatología , Ratones , Ratones Noqueados , Ratones Transgénicos , MicroARNs/metabolismo , Factor de Transcripción STAT3/metabolismo , Proteínas Smad/metabolismo , Traumatismos de la Médula Espinal/patología , Regulación hacia Arriba
10.
J Neuroinflammation ; 8: 16, 2011 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-21324162

RESUMEN

BACKGROUND: Stromal cell-derived factor-1 (SDF1) and its major signaling receptor, CXCR4, were initially described in the immune system; however, they are also expressed in the nervous system, including the spinal cord. After spinal cord injury, the blood brain barrier is compromised, opening the way for chemokine signaling between these two systems. These experiments clarified prior contradictory findings on normal expression of SDF1 and CXCR4 as well as examined the resulting spinal cord responses resulting from this signaling. METHODS: These experiments examined the expression and function of SDF1 and CXCR4 in the normal and injured adult mouse spinal cord primarily using CXCR4-EGFP and SDF1-EGFP transgenic reporter mice. RESULTS: In the uninjured spinal cord, SDF1 was expressed in the dorsal corticospinal tract (dCST) as well as the meninges, whereas CXCR4 was found only in ependymal cells surrounding the central canal. After spinal cord injury (SCI), the pattern of SDF1 expression did not change rostral to the lesion but it disappeared from the degenerating dCST caudally. By contrast, CXCR4 expression changed dramatically after SCI. In addition to the CXCR4+ cells in the ependymal layer, numerous CXCR4+ cells appeared in the peripheral white matter and in the dorsal white matter localized between the dorsal corticospinal tract and the gray matter rostral to the lesion site. The non-ependymal CXCR4+ cells were found to be NG2+ and CD11b+ macrophages that presumably infiltrated through the broken blood-brain barrier. One population of macrophages appeared to be migrating towards the dCST that contains SDF1 rostral to the injury but not towards the caudal dCST in which SDF1 is no longer present. A second population of the CXCR4+ macrophages was present near the SDF1-expressing meningeal cells. CONCLUSIONS: These observations suggest that attraction of CXCR4+ macrophages is part of a programmed response to injury and that modulation of the SDF1 signaling system may be important for regulating the inflammatory response after SCI.


Asunto(s)
Movimiento Celular/fisiología , Quimiocina CXCL12/metabolismo , Tractos Piramidales/metabolismo , Receptores CXCR4/metabolismo , Traumatismos de la Médula Espinal/metabolismo , Animales , Barrera Hematoencefálica/metabolismo , Quimiocina CXCL12/genética , Ratones , Ratones Transgénicos , Receptores CXCR4/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Transducción de Señal/fisiología , Traumatismos de la Médula Espinal/patología
11.
Front Neural Circuits ; 15: 642111, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33867945

RESUMEN

Spinal cord injury (SCI) results in not only the loss of voluntary muscle control, but also in the presence of involuntary movement or spasms. These spasms post-SCI involve hyperexcitability in the spinal motor system. Hyperactive motor commands post SCI result from enhanced excitatory postsynaptic potentials (EPSPs) and persistent inward currents in voltage-gated L-type calcium channels (LTCCs), which are reflected in evoked root reflexes with different timings. To further understand the contributions of these cellular mechanisms and to explore the involvement of LTCC subtypes in SCI-induced hyperexcitability, we measured root reflexes with ventral root recordings and motoneuron activities with intracellular recordings in an in vitro preparation using a mouse model of chronic SCI (cSCI). Specifically, we explored the effects of 1-(3-chlorophenethyl)-3-cyclopentylpyrimidine-2,4,6-(1H,3H,5H)-trione (CPT), a selective negative allosteric modulator of CaV1.3 LTCCs. Our results suggest a hyperexcitability in the spinal motor system in these SCI mice. Bath application of CPT displayed slow onset but dose-dependent inhibition of the root reflexes with the strongest effect on LLRs. However, the inhibitory effect of CPT is less potent in cSCI mice than in acute SCI (aSCI) mice, suggesting changes either in composition of CaV1.3 or other cellular mechanisms in cSCI mice. For intracellular recordings, the intrinsic plateau potentials, was observed in more motoneurons in cSCI mice than in aSCI mice. CPT inhibited the plateau potentials and reduced motoneuron firings evoked by intracellular current injection. These results suggest that the LLR is an important target and that CPT has potential in the therapy of SCI-induced muscle spasms.


Asunto(s)
Traumatismos de la Médula Espinal , Potenciales Postsinápticos Excitadores , Humanos , Neuronas Motoras , Músculo Esquelético , Espasmo , Médula Espinal , Traumatismos de la Médula Espinal/tratamiento farmacológico
12.
J Neurosci Res ; 88(14): 3161-70, 2010 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-20818775

RESUMEN

Injection into the injured spinal cord of peptide amphiphile (PA) molecules that self-assemble and display the laminin epitope IKVAV at high density improved functional recovery after spinal cord injury (SCI) in two different species, rat and mouse, and in two different injury models, contusion and compression. The improvement required the IKVAV epitope and was not observed with the injection of an amphiphile displaying a nonbioactive sequence. To explore the mechanisms underlying these improvements, the number of serotonergic fibers in the lesioned spinal cord was compared in animals receiving the IKVAV-PA, a nonbioactive PA (PA control), or sham injection. Serotonergic fibers were distributed equally in all three groups rostral to the injury but showed a significantly higher density caudal to the injury site in the IKVAV PA-injected group. Furthermore, this difference was not present in the subacute phase following injury but appeared in the chronically injured cord. The IKVAV PA-injected groups also trended higher both in the total number neurons adjacent to the lesion and in the number of long propriospinal tract connections from the thoracic to the lumbar cord. IKVAV PA injection did not alter myelin thickness, total axon number caudal to the lesion, axon size distribution, or total axon area. Serotonin can promote stepping even in complete transection models, so the improved function produced by the IKVAV PA treatment may reflect the increased serotonergic innervation caudal to the lesion in addition to the previously demonstrated regeneration of motor and sensory axons through the lesion.


Asunto(s)
Fibras Nerviosas/efectos de los fármacos , Plasticidad Neuronal/efectos de los fármacos , Serotonina/fisiología , Traumatismos de la Médula Espinal/tratamiento farmacológico , Tensoactivos/farmacología , Animales , Recuento de Células , Modelos Animales de Enfermedad , Femenino , Laminina/administración & dosificación , Laminina/fisiología , Ratones , Ratones de la Cepa 129 , Nanofibras , Fibras Nerviosas/fisiología , Regeneración Nerviosa/efectos de los fármacos , Regeneración Nerviosa/fisiología , Plasticidad Neuronal/fisiología , Fragmentos de Péptidos/administración & dosificación , Péptidos/administración & dosificación , Ratas , Ratas Long-Evans , Traumatismos de la Médula Espinal/metabolismo
13.
Artículo en Inglés | MEDLINE | ID: mdl-27630770

RESUMEN

STUDY DESIGN: This research utilized a cross-sectional design with control group inclusion. OBJECTIVES: Preliminary evidence suggests that a portion of the patient population with chronic whiplash may have sustained spinal cord damage. Our hypothesis is that in some cases of chronic whiplash-associated disorders (WAD), observed muscle weakness in the legs will be associated with local signs of a partial spinal cord injury of the cervical spine. SETTING: University based laboratory in Chicago, IL, USA. METHODS: Five participants with chronic WAD were compared with five gender/age/height/weight/body mass index (BMI) control participants. For a secondary investigation, the chronic WAD group was compared with five unmatched participants with motor incomplete spinal cord injury (iSCI). Spinal cord motor tract integrity was assessed using magnetization transfer imaging. Muscle fat infiltration (MFI) was quantified using fat/water separation magnetic resonance imaging. Central volitional muscle activation of the plantarflexors was assessed using a burst superimposition technique. RESULTS: We found reduced spinal cord motor tract integrity, increased MFI of the neck and lower extremity muscles and significantly impaired voluntary plantarflexor muscle activation in five participants with chronic WAD. The lower extremity structural changes and volitional weakness in chronic WAD were comparable to participants with iSCI. CONCLUSION: The results support the position that a subset of the chronic whiplash population may have sustained partial damage to the spinal cord. SPONSORSHIP: NIH R01HD079076-01A1, NIH T32 HD057845 and the Foundation for Physical Therapy Promotion of Doctoral Studies program.

14.
Physiol Rep ; 2(8)2014 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-25107988

RESUMEN

Although the loss of motoneurons is an undisputed feature of amyotrophic lateral sclerosis (ALS) in man and in its animal models (SOD1 mutant mice), how the disease affects the size and excitability of motoneurons prior to their degeneration is not well understood. This study was designed to test the hypothesis that motoneurons in mutant SOD1(G93A) mice exhibit an enlargement of soma size (i.e., cross-sectional area) and an increase in Cav1.3 channel expression at postnatal day 30, well before the manifestation of physiological symptoms that typically occur at p90 (Chiu et al. 1995). We made measurements of spinal and hypoglossal motoneurons vulnerable to degeneration, as well as motoneurons in the oculomotor nucleus that are resistant to degeneration. Overall, we found that the somata of motoneurons in male SOD1(G93A) mutants were larger than those in wild-type transgenic males. When females were included in the two groups, significance was lost. Expression levels of the Cav1.3 channels were not differentiated by genotype, sex, or any interaction of the two. These results raise the intriguing possibility of an interaction between male sex steroid hormones and the SOD1 mutation in the etiopathogenesis of ALS.

15.
J Electromyogr Kinesiol ; 23(3): 531-9, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23369875

RESUMEN

Mouse models are commonly used for identifying the behavioral consequences of genetic modifications, progression or recovery from disease or trauma models, and understanding spinal circuitry. Electromyographic recordings (EMGs) are recognized as providing information not possible from standard behavioral analyses involving gross behavioral or kinematic assessments. We describe here a method for recording from relatively large numbers of muscles in behaving mice. We demonstrate the use of this approach for recording from hindlimb muscles bilaterally in intact animals, following spinal cord injury, and during the progression of ALS. This design can be used in a variety of applications in order to characterize the coordination strategies of mice in health and disease.


Asunto(s)
Esclerosis Amiotrófica Lateral/fisiopatología , Electromiografía/instrumentación , Músculo Esquelético/fisiopatología , Traumatismos de la Médula Espinal/fisiopatología , Animales , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Electrodos Implantados , Diseño de Equipo , Miembro Posterior/fisiología , Locomoción/fisiología , Ratones , Ratones Transgénicos , Condicionamiento Físico Animal , Mutación Puntual , Superóxido Dismutasa/genética , Superóxido Dismutasa-1
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA