Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Electrophoresis ; 42(6): 719-724, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33185273

RESUMEN

Arsenic aromatic compounds including p-arsanylic acid (pASA) are still widely used in a number of countries as the feed additives in animal breeding resulting in its entering the environment. Under the influence of oxidizing agents or UV radiation, pASA undergoes transformations leading to generation of inorganic arsenic species that are more mobile and toxic than organic ones. On the one hand, an approach based on the treatment of contaminated waters by UV irradiation seems perspective for their detoxification, but the feasibility of this approach depends on the composition of the products forming as a result of photodegradation. In the present work, a CZE was applied for the study of the pASA degradation process during stationary (308 nm) photolysis in the presence of Fe(III)-oxalate complex. A developed assay allowed controlling the parent compounds and also As-containing products of pASA degradation, presented mainly by arsenate and arsenite ions. It was found that the main inorganic derivatives of the pASA photolytic conversions are presented by arsenate and arsenite ions whose ratio depends on the initial amount of pASA and reaction conditions.


Asunto(s)
Electroforesis Capilar , Animales , Ácido Arsanílico , Arseniatos , Arsénico , Arsenitos , Compuestos Férricos , Concentración de Iones de Hidrógeno , Compuestos Orgánicos , Fotólisis
2.
Chemosphere ; 367: 143643, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39476980

RESUMEN

Mechanism of direct UV photolysis of the zwitterionic and anionic forms of the quinolone antibiotic ciprofloxacin (CIP) was revealed by combination of nanosecond laser flash photolysis, steady-state photolysis coupled with high resolution LC-MS and DFT quantum-chemical calculations. For both forms, the main intermediate is a dissociative triplet state, which loses a fluorine ion to form a triplet carbocation; subsequent solvent attack of the latter leads to the formation of products of hydroxylation both the aromatic ring and the piperazyl substituent. Correspondingly, the quantum yield of photolysis of both CIP forms does not depend on the excitation wavelength, but depends on the concentration of dissolved oxygen. Secondary photolysis leads to a number of products of oxidation of the aromatic system, as well as oxidation, opening and full destruction of the piperazinyl substituent. The results obtained may be important for understanding the fate of quinolone antibiotics in UVC disinfection processes and in natural waters under the action of sunlight.

3.
Chemosphere ; 334: 138952, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37201608

RESUMEN

Mechanism of direct UV photolysis of nalidixic acid (NA), a model quinolone antibiotic, was revealed using a combination of steady-state photolysis coupled with high resolution LC-MS and DFT quantum-chemical calculations. Both quantum yields of photodegradation and detailed identification of final products were performed for the first time for two main forms of NA: neutral and anionic. The quantum yield of NA photodegradation is 0.024 and 0.0032 for the neutral and anionic forms in the presence of dissolved oxygen and 0.016/0.0032 in deoxygenated solutions, respectively. The main process is photoionization with the formation of a cation radical, which undergoes transformation into three different neutral radicals and further into final photoproducts. It is shown that the triplet state does not play a role in the photolysis of this compound. The main products of photolysis are the products of the loss of carboxyl, methyl and ethyl groups in the NA molecule, as well as the dehydrogenation of the ethyl group. The results obtained may be important for understanding the fate of pyridine herbicides in the processes of disinfection by UV and in natural waters under the action of sunlight.


Asunto(s)
Ácido Nalidíxico , Contaminantes Químicos del Agua , Fotólisis , Cinética , Luz Solar , Agua/química , Contaminantes Químicos del Agua/análisis
4.
Chemosphere ; 298: 134237, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35259360

RESUMEN

The efficiency of oxidative species generation is one of the crucial parameters for the application of any system based on advanced oxidation processes (AOPs). This paper presents an approach to the correct determination of quantum yields of the hydroxyl radical upon UV photolysis of natural Fe(III) carboxylates, which are widely used in the works devoted to Environmental Chemistry and Water Treatment. The approach is based on the use of [FeOH]2+ hydroxocomplex as a reference system with the well-known quantum yield of hydroxyl radical and benzene as a selective trap for the •OH radical. For the first time, the quantum yields of the •OH radical have been determined for the most popular Fe(III) oxalate photosystem in the wide range of initial parameters (pH, excitation wavelength, concentration of oxalate and Fe(III) ions). Also the oxidation potential of Fe(III) oxalate photosystem was tested on a set of persistent organic herbicides, and quantum yields of the photodegradation of herbicides were compared with the quantum yield of the •OH radical. The Fe(III) oxalate photosystem is recommended as a suitable system for the generation of •OH radical at neutral pH under UV radiation.


Asunto(s)
Herbicidas , Contaminantes Químicos del Agua , Ácidos Carboxílicos , Compuestos Férricos , Radical Hidroxilo , Cinética , Compuestos Orgánicos , Oxalatos , Oxidación-Reducción , Fotólisis , Rayos Ultravioleta , Contaminantes Químicos del Agua/análisis
5.
Environ Sci Pollut Res Int ; 28(47): 67891-67897, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34714477

RESUMEN

Reactivity of oxidative species with target pollutants is one of the crucial parameters for application of any system based on advanced oxidation processes (AOPs). This work presents new useful approach how to determine the hydroxyl radical reaction rate constants (kOH) using UVA laser flash photolysis technique. Fe (III) hydroxocomplex at pH 3 was applied as a standard source of hydroxyl radicals and methyl viologen dication (MV2+) was used as selective probe for •OH radical. Application of MV2+ allows to determine kOH values even for compounds which do not generate themselves optically detectable transient species in reaction with hydroxyl radicals. Validity of this approach was tested on a wide range of different persistent pesticides and its main advantages and drawbacks in comparison with existing steady-state and time-resolved techniques were discussed.


Asunto(s)
Contaminantes Ambientales , Contaminantes Químicos del Agua , Radical Hidroxilo , Hierro , Cinética , Oxidación-Reducción , Paraquat , Fotólisis
6.
Chemosphere ; 261: 127770, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32731031

RESUMEN

Organic arsenicals are important environment pollutants due to wide use in livestock and toxicity of degradation products. In this work we report about the efficient photodegradation of the p-arsanilic acid (p-ASA) and its decomposition products in the Fe(III)-oxalate assisted approach under nature-relevant conditions. At neutral pH under near-visible UV irradiation the Fe(III) oxalate complexes generate the primary oxidizing intermediate, OH radical (the quantum yield of ϕOH âˆ¼ 0.06), which rapidly reacts with p-ASA with high rate constant, (8.6 ± 0.5) × 109 M-1s-1. Subsequent radical reactions result in the complete photooxidation of both p-ASA and basic aromatic photoproducts with the predominant formation of inorganic arsenic species, mainly As(V), under optimal conditions. Comparing with the direct UV photolysis, the presented Fe(III)-oxalate mediated degradation of p-ASA has several advantages: higher efficiency at low p-ASA concentration and complete degradation of organic arsenic by-products without use of short-wavelength UV radiation. The obtained results illustrate that the Fe(III)-oxalate complexes are promising natural photosensitizers for the removal of arsenic pollutants from contaminated waters.


Asunto(s)
Ácido Arsanílico/química , Hierro/química , Arsénico , Compuestos Férricos/química , Concentración de Iones de Hidrógeno , Compuestos Orgánicos , Oxalatos/química , Fotólisis , Rayos Ultravioleta
7.
Sci Total Environ ; 738: 140298, 2020 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-32806347

RESUMEN

Imipramine (IMI) is a frequently prescribed tricyclic antidepressant and widely detected in the natural waters, while the environmental fate of IMI is yet poorly understood. Here, we investigated the photodegradation of IMI under simulated sunlight in the presence of humic substances (HS), typically including humic acid (HA) and fulvic acid (FA). The direct and indirect IMI photodegradation was found to increase both with increasing pH and with deoxygenation of the reaction solutions. The excited triplet state of HS (3HS⁎) was mainly responsible for the photosensitized degradation of IMI according to the steady-state quenching and direct time-resolved experiments. The electron transfer interaction between 3HS⁎ and IMI was observed by laser flash photolysis (LFP) with bimolecular reaction rate constants of (4.9 ± 0.4) × 109 M-1 s-1. Evidence of electron transfer from IMI to 3HS⁎ was further demonstrated by the photoproduct analysis. The indirect photodegradation was triggered off in the side chain of IMI with the nonbonding nitrogen electron transferring to 3HS⁎, followed by hydroxylation, demethylation and cleavage of the side chain. Very important that HS photosystem does not lose its efficiency with decreasing of IMI concentration, meaning that the studied photosystem still be used at environmentally relevant concentrations of IMI. These results suggest that photodegradation could be an important attenuation pathway for IMI in HS-rich and anaerobic natural waters.


Asunto(s)
Sustancias Húmicas/análisis , Contaminantes Químicos del Agua , Imipramina , Fotólisis , Luz Solar
8.
Chemosphere ; 220: 574-581, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30597365

RESUMEN

The mechanism of direct UV photolysis of p-arsanilic acid (p-ASA), a widely used veterinary drug, was revised by means of laser flash photolysis coupled with high resolution liquid chromatography - mass spectrometry (LC-MS). None of p-ASA triplet state or singlet oxygen was found to directly participate in the photodegradation of p-ASA as it was assumed in previous works. Here we demonstrate that the main primary photoprocess is a monophotonic ionization (ϕion266nm = 0.032) leading to the formation of hydrated electron and corresponding anilinyl cation radical. These primary species react with dissolved oxygen yielding secondary reactive oxygen species. The final organic photoproducts, such as aminophenol and different dimeric products, originate from various reactions between these secondary species. The generation of inorganic arsenic, both As(V) and As(III), was also observed in agreement with previous works. For the first time we report the quantum yield of p-ASA photodegradation, which decreases from 0.058 to 0.035 with the excitation wavelength from 222 to 308 nm.


Asunto(s)
Ácido Arsanílico/efectos de la radiación , Fotólisis , Rayos Ultravioleta , Rayos Láser , Oxígeno/química , Especies Reactivas de Oxígeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA