RESUMEN
Herein, a new, direct paper-based fluorimetric method is described for the quantitative determination of glutathione (GSH) molecules in nutritional supplements. Briefly, the proposed analytical method is based on the fluorescence emission resulting from the direct and selective chemical reaction of GSH molecules with the derivatization reagent that is o-phthalaldehyde (OPA) in acidic conditions at room temperature. The intensity of the emitted fluorescence on the surface of the analytical paper devices after irradiation with a lamp at 365 nm is proportional to the concentration of GSH and is measured using a smartphone as the detector. This methodology, which is suitable for measurements in laboratories with limited resources, does not require specialized instrumentation or trained personnel. The protocol governing the proposed method is simple and easily applicable. Essentially, the chemical analyst should adjust the value of pH on the surface of the paper by adding a minimal amount of buffer solution; then, after adding a few microliters of the derivatization reagent, wait for the surface of the paper to dry and, finally, add the analyte. Subsequently, the irradiation of the sensor and the measurement of the emitted fluorescence can be recorded with a mobile phone. In the present study, several parameters affecting the chemical reaction and the emitted fluorescence were optimized, the effect of interfering compounds that may be present in dietary supplements was examined, and the stability of these paper sensors under different storage conditions was evaluated. Additionally, the chemical stability of these paper devices in various maintenance conditions was studied, with satisfactory results. The detection limit calculated as 3.3 S/N was 20.5 µmol L-1, while the precision of the method was satisfactory, ranging from 3.1% (intra-day) to 7.3% (inter-day). Finally, the method was successfully applied to three different samples of dietary supplements.
Asunto(s)
Suplementos Dietéticos , Fluorometría , Glutatión , Papel , o-Ftalaldehído , o-Ftalaldehído/química , Suplementos Dietéticos/análisis , Fluorometría/métodos , Glutatión/análisis , Glutatión/química , Espectrometría de Fluorescencia/métodosRESUMEN
A simple, equipment-free, direct fluorometric method, employing paper-based analytical devices (PADs) as sensors, for the selective determination of quinine (QN) is described herein. The suggested analytical method exploits the fluorescence emission of QN without any chemical reaction after the appropriate pH adjustment with nitric acid, at room temperature, on the surface of a paper device with the application of a UV lamp at 365 nm. The devices crafted had a low cost and were manufactured with chromatographic paper and wax barriers, and the analytical protocol followed was extremely easy for the analyst and required no laboratory instrumentation. According to the methodology, the user must place the sample on the detection area of the paper and read with a smartphone the fluorescence emitted by the QN molecules. Many chemical parameters were optimized, and a study of interfering ions present in soft drink samples was carried out. Additionally, the chemical stability of these paper devices was considered in various maintenance conditions with good results. The detection limit calculated as 3.3 S/N was 3.6 mg L-1, and the precision of the method was satisfactory, being from 3.1% (intra-day) to 8.8% (inter-day). Soft drink samples were successfully analyzed and compared with a fluorescence method.
Asunto(s)
Papel , Quinina , Fluorometría , Bebidas Gaseosas , Factores de TiempoRESUMEN
In this communication, we describe the first analytical method for the determination of free histidine in hair care products (shampoos and conditioners). Cation-exchange chromatography combined with postcolumn derivatization and fluorimetric detection enabled the accurate (recovery: 83.5-114.8%) and precise (2.4-5.6% RSD) determination of free histidine without matrix interferences at concentration levels down to 1.5 mg kg-1. Real commercially available samples were found to contain the amino acid at levels ranging between 70 and 535 mg kg-1.
Asunto(s)
Preparaciones para el Cabello , Histidina , Humanos , Cromatografía Líquida de Alta Presión/métodos , Fluorometría , Indicadores y ReactivosRESUMEN
A high-throughput fluorimetric assay for histidine was developed, using a 96-well plates platform. The analyte reacts selectively with o-phthalaldehyde under mild alkaline conditions to form a stable derivative. Instrumental-free detection was carried out using a smartphone after illumination under UV light (365 nm). The method was proved to be linear up to 100 µM histidine, with an LLOQ (lower limit of quantification) of 10 µM. The assay was only prone to interference from glutathione and histamine that exist in the urine samples at levels that are orders of magnitude lower compared to histidine. Human urine samples were analyzed following minimum treatment and were found to contain histidine in the range of 280 to 1540 µM. The results were in good agreement with an HPLC corroborative method.
Asunto(s)
Ensayos Analíticos de Alto Rendimiento , Histidina , Teléfono Inteligente , Fluorometría/métodos , Histidina/orina , Humanos , o-Ftalaldehído/químicaRESUMEN
Histidine (His) is an essential amino acid that plays an important biological role and associated with various pathological conditions. A simple and reliable method for the determination of endogenous histidine in human saliva was optimized and validated. The analyte was separated from the saliva matrix by cation exchange chromatography and detected fluorimetrically (λex/λem = 360/440 nm) after online, specific post-column derivatization (PCD) reaction with o-phthalaldehyde. The chemical and instrumental variables of the post-column reaction were optimized using Box-Behnken experimental design to achieve maximum sensitivity. Method validation was carried out employing the total-error concept. Histidine could be analyzed reliably in the range of 0.5-5.0 µΜ, with an LOD (S/N = 3) of 50 nM. Monte Carlo simulations and capability analysis were used to investigate the ruggedness of the PCD reaction. The sampling strategy, sample preparation and stability were also investigated. Seventeen saliva samples were successfully analyzed with histidine levels being in the range of 2.7-19.5 µΜ.
Asunto(s)
Histidina , Saliva , Cromatografía Líquida de Alta Presión/métodos , Histidina/análisis , Humanos , Proyectos de Investigación , o-Ftalaldehído/químicaRESUMEN
A fast and green ultra-high-performance liquid chromatographic method was developed for the determination of ibuprofen in milk-containing simulated gastrointestinal media to monitor the dissolution of three-dimensional printed formulations. To remove interfering compounds, protein precipitation using methanol as a precipitation reagent was performed. The separation of the target analyte was performed on a C18 column using a mobile phase consisting of 0.05% v/v aqueous phosphoric acid solution: methanol, 25:75% v/v. Method validation was conducted using the total error concept. The ß-expectation tolerance intervals did not exceed the acceptance criteria of ±15%, meaning that 95% of future results will be included in the defined bias limits. The relative bias ranged between â1.1 and +3.2% for all analytes, while the relative standard deviation values for repeatability and intermediate precision were less than 2.8% and 3.9%, respectively. The achieved limit of detection was 0.01 µg/ml and the lower limit of quantitation was established as 2 µg/ml. The proposed method was simple, and it required reduced organic solvent consumption following the requirements of Green Analytical Chemistry. The method was successfully employed for the determination of ibuprofen in real biorelevant media obtained from dissolution studies.
Asunto(s)
Ibuprofeno , Leche , Animales , Leche/química , Ibuprofeno/análisis , Solubilidad , Metanol , Límite de Detección , Cromatografía Liquida , Cromatografía Líquida de Alta Presión/métodosRESUMEN
A salting-out homogeneous liquid-liquid microextraction was proposed for the quantification of four azole drugs in human urine prior to high-performance liquid chromatography analysis. The procedure involved the mixing of the sample with acetonitrile in appropriate volumes followed by the addition of sodium sulfate solution in order to facilitate phase separation. The parameters influencing the extraction performance were studied and optimized using a two-step experimental design. The analytical procedure was thoroughly validated using the accuracy profiles as a graphical decision-making tool. The ß-expectation tolerance intervals did not exceed the acceptance criteria of ±15% meaning that 95% of future results will be included in the defined bias limits. The limits of detection of the procedure were satisfactory, ranging between 0.01 and 0.03 µg/mL. The mean analytical bias in the spiking levels was satisfactory and ranged between -10.3 and 4.2% while the relative standard deviation was lower than 5.6%. Monte-Carlo simulations followed by capability analysis were employed to investigate the ruggedness of the sample preparation protocol. The developed method offers advantages compared to previously reported approaches for the same type of analysis including extraction efficiency and scaling down of the sample volume and extraction time.
Asunto(s)
Microextracción en Fase Líquida , Azoles , Cromatografía Líquida de Alta Presión/métodos , Humanos , Límite de Detección , Microextracción en Fase Líquida/métodos , Extracción Líquido-Líquido , Cloruro de Sodio/químicaRESUMEN
A novel, rapid, and facile method for the colorimetric determination of calcium using micro-analytical paper-based devices (µ-PADs) was developed. The proposed analytical method utilizes the color differences developing, after the addition of calcium, on the surface of the devices because of the complexation reaction of calcium with Methylthymol Blue (MTB) at room temperature, in alkaline pH. The devices were manufactured with chromatographic paper, using wax barriers, and the analytical protocol was easily implemented without the need of any experimental apparatus except for a simple imaging device. The user must regulate the pH, add the solutions on the paper, and measure the color intensity of the formed Ca(II)-MTB complex with a flatbed scanner. The experimental conditions for optimum color development, the possible interfering substances, and the reliability of the paper devices in different preserving conditions were optimized, with satisfactory results. The method exhibited acceptable detection limits (2.9 mg L-1) with sufficiently good precision, which varied from 4.2% (intra-day) to 6.4% (inter-day). Saliva samples from healthy volunteers were successfully analyzed, and the calcium levels were calculated in the range of 30.71 to 84.15 mg L-1.
Asunto(s)
Calcio , Colorimetría , Humanos , Calcio/análisis , Saliva/química , Reproducibilidad de los Resultados , PapelRESUMEN
Herein, we report a new automated flow method based on zone fluidics for the simultaneous determination of homocysteine and homocysteine thiolactone using fluorimetric detection (λext = 370 nm/λem = 480 nm). Homocysteine thiolactone is hydrolyzed on-line in alkaline medium (1 mol L−1 NaOH) to yield homocysteine, followed by reaction with o-phthalaldehyde in a single step. Derivatization is rapid without the need of elevated temperatures and stopped-flow steps, while specificity is achieved through a unique reaction mechanism in the absence of nucleophilic compounds. Mixtures of the analytes can be analyzed quantitatively after specific separation with fluorosurfactant-capped gold nanoparticles that are selectively aggregated by homocysteine, leaving the thiolactone analogue in solution. As low as 100 nmol L−1 of the analyte(s) can be quantified in aqueous solutions, while concentrations > 2 µmol L−1 can be analyzed in artificial and real urine matrix following 20-fold dilution. The percent recoveries ranged between 87 and 119%.
Asunto(s)
Oro , Nanopartículas del Metal , Homocisteína/análogos & derivados , HidrólisisRESUMEN
In this study, the development, validation, and application of a new liquid chromatography post-column derivatization method for the determination of Colistin in human urine samples is demonstrated. Separation of Colistin was performed using a core-shell C18 analytical column in an alkaline medium in order (i) to be compatible with the o-phthalaldehyde-based post-column derivatization reaction and (ii) to obtain better retention of the analyte. The Colistin derivative was detected spectrofluorometrically (λext/λem = 340/460 nm) after post-column derivatization with o-phthalaldehyde and N-acetyl cysteine. The post-column derivatization parameters were optimized using the Box-Behnken experimental design, and the method was validated using the total error concept. The ß-expectation tolerance intervals did not exceed the acceptance criteria of ±15%, meaning that 95% of future results would be included in the defined bias limits. The limit of detection of the method was adequate corresponding to 100 nmol·L-1. The mean analytical bias (expressed as relative error) in the spiking levels was suitable, being in the range of -2.8 to +2.5% for both compounds with the percentage relative standard deviation lower than 3.4% in all cases. The proposed analytical method was satisfactorily applied to the analysis of the drug in human urine samples.
Asunto(s)
Colistina , Acetilcisteína , Cromatografía Líquida de Alta Presión/métodos , Colistina/orina , Humanos , o-FtalaldehídoRESUMEN
In the present research, a zone fluidics-based automated sensor for the analysis of captopril in in vitro dissolution samples is reported. Captopril is reacted under flow conditions with Ni(II) (10 mmol L-1) in alkaline medium (0.15% v/v NH3) to form a stable derivate, which is monitored spectrophotometrically at 340 nm. The chemical and instrumental parameters were carefully investigated and optimized. The validation of the developed method was performed in the range of 5 to 120% of the expected maximum concentration using the accuracy profiles as a graphical decision-making tool. The ß-expectation tolerance intervals did not exceed the acceptance criteria of ±10%, which means that 95% of future results will be encompassed in the defined bias limits. The variation of the relative bias ranged between -2.3% and 3.5% and the RSD values for repeatability and intermediate precision were lower than 2.3% in all cases. The limit of detection (LOD), and the lower and the upper limit of quantification (LLOQ, ULOQ) were satisfactory and found to be 1%, 5% and 120% (corresponding to 0.6, 2.78 and 66.67 µg mL-1 in dissolution medium). The developed method was successfully applied for the analysis of captopril in dissolution tests of two commercially available batches.
Asunto(s)
Captopril/química , Técnicas de Química Analítica/instrumentación , Automatización , SolubilidadRESUMEN
The first dispersive liquid liquid microextraction scheme followed by liquid chromatography-post column derivatization for the determination of the antiviral drug rimantadine in urine samples is demonstrated. The effect of the type and volume of organic extraction solvent, type and volume of disperser solvent, sample pH, ionic strength, extraction time, and centrifugation speed on the extraction efficiency were studied. Rimantadine and the internal standard (amantadine) were chromatographed using a reversed phase monolithic stationary phase with a mixture of equal volumes of methanol and phosphate buffer (pH = 3) as mobile phase. On-line post-column derivatization of the analyte was performed using a "two-stream" manifold with o-phthalaldehyde and N-acetyl-cysteine at alkaline medium. Under the optimized extraction conditions, the enrichment factor of rimantadine was 58. The linear range was 5-100 µg/L with correlation coefficient r of 0.9984 while the limit of detection achieved was 0.5 µg/L. The within-day and between-day precision for the tested concentration levels were less than 14.3% and the mean recoveries obtained from the spiked samples were ranged between 87.5 and 113.9%. The main advantages of the proposed method are the simplicity of operation, rapidity, low cost, and low limit of detection of the analyte.
Asunto(s)
Microextracción en Fase Líquida , Rimantadina/orina , Cromatografía Líquida de Alta Presión/instrumentación , Voluntarios Sanos , Humanos , Microextracción en Fase Líquida/instrumentaciónRESUMEN
In the present study we report the reaction between homocysteine and o-phthalaldehyde under flow conditions. Homocysteine reacts on-line with the derivatization reagent in a strong alkaline medium and in the absence of nucleophilic reagents to yield a fluorescent derivative (λex /λem = 370/480 nm). The reaction variables were investigated using the concept of zone fluidics. Selectivity factors against other compounds were calculated at 10-fold excess. The findings formed the basis of an automated proposed method that was found to be linear in the range 0.1-1.5 µmol L-1 , with a limit of detection of 20 nmol L-1 and relative standard deviation < 0.5% (within-day) and 3.2% (between-day). The method proved to be rapid, offering a practical sampling rate of 24 h-1 and accurate following application to an artificial urine matrix with minimum dilution.
Asunto(s)
Homocisteína , o-Ftalaldehído , Cromatografía Líquida de Alta Presión , Fluorometría , Indicadores y ReactivosRESUMEN
Undoubtedly, sample preparation is one of the most important steps in the analytical process [...].
Asunto(s)
Microextracción en Fase Sólida/métodos , Animales , Extractos Vegetales/aislamiento & purificación , Plantas/química , Reproducibilidad de los Resultados , Manejo de EspecímenesRESUMEN
In-tube solid phase microextraction is a cutting-edge sample treatment technique offering significant advantages in terms of miniaturization, green character, automation, and preconcentration prior to analysis. During the past years, there has been a considerable increase in the reported publications, as well as in the research groups focusing their activities on this technique. In the present review article, HPLC bioanalytical applications of in-tube SPME are discussed, covering a wide time frame of twenty years of research reports. Instrumental aspects towards the coupling of in-tube SPME and HPLC are also discussed, and detailed information on materials/coatings and applications in biological samples are provided.
Asunto(s)
Cromatografía Líquida de Alta Presión , Microextracción en Fase Sólida , Cromatografía Líquida de Alta Presión/instrumentación , Cromatografía Líquida de Alta Presión/métodos , Cromatografía Líquida de Alta Presión/tendencias , Humanos , Espectrometría de Masas , Farmacología Clínica/instrumentación , Farmacología Clínica/métodos , Microextracción en Fase Sólida/instrumentación , Microextracción en Fase Sólida/métodos , Microextracción en Fase Sólida/normas , Microextracción en Fase Sólida/tendenciasRESUMEN
In the present study, the determination of histidine (HIS) by an on-line flow method based on the concept of zone fluidics is reported. HIS reacts fast with o-phthalaldehyde at a mildly basic medium (pH 7.5) and in the absence of additional nucleophilic compounds to yield a highly fluorescent derivative (λex/λem = 360/440 nm). The flow procedure was optimized and validated, paying special attention to its selectivity and sensitivity. The LOD was 31 nmol·L-1, while the within-day and day-to-day precisions were better than 1.0% and 5.0%, respectively (n = 6). Random urine samples from adult volunteers (n = 7) were successfully analyzed without matrix effect (<1%). Endogenous HIS content ranged between 116 and 1527 µmol·L-1 with percentage recoveries in the range of 87.6%-95.4%.
Asunto(s)
Histidina/orina , Orina/química , Adulto , Cromatografía Líquida de Alta Presión , Femenino , Fluorometría , Humanos , Límite de Detección , Masculino , Voluntarios , o-Ftalaldehído/químicaRESUMEN
An automated flow method for the determination of hydrazine based on the concept of zone-fluidics has been developed. The analyte reacts under flow conditions with p-dimethylamino benzaldehyde (25 mmol L-1) in micellar medium (100 mmol L-1 SDS) to form a stable derivative (460 nm). Micelles mediated catalysis excludes the use of highly acidic environment typical for this kind of reaction. Following careful examination of chemical and instrumental variables, the method allows the determination of hydrazine at the low micromolar level (0.3-10 µmol L-1) in water samples. Real sample analyses (drinking and boiler feed water) resulted in satisfactory results in terms of accuracy with the percent recoveries being in the range of 82-114%.
Asunto(s)
Hidrazinas/análisis , Contaminantes Químicos del Agua/análisis , Benzaldehídos/química , Catálisis , Exactitud de los Datos , Límite de Detección , Micelas , Dodecil Sulfato de Sodio/química , Temperatura , Factores de Tiempo , Agua/químicaRESUMEN
A zone-fluidics (ZF) based automated fluorimetric sensor for the determination of pharmaceutically active adamantine derivatives, i.e., amantadine (AMA), memantine (MEM) and rimantadine (RIM) is reported. Discrete zones of the analytes and reagents (o-phthalaldehyde and N-acetylcysteine) mix and react under stopped-flow conditions to yield fluorescent iso-indole derivatives (λex/ λem = 340/455 nm). The proposed ZF sensor was developed and validated to prove suitable for quality control tests (assay and content uniformity) of commercially available formulations purchased from the Greek market (EU licensed) and from non-EU web-pharmacies at a sampling rate of 16 h-1. Interestingly, a formulation obtained through the internet and produced in a third-non-EU-country (AMA capsules, 100 mg per cap), was found to be out of specifications (mean assay of 85.3%); a validated HPLC method was also applied for confirmatory purposes.
Asunto(s)
Amantadina/aislamiento & purificación , Fluorometría/métodos , Memantina/aislamiento & purificación , Rimantadina/aislamiento & purificación , Amantadina/química , Cromatografía Líquida de Alta Presión , Indicadores y Reactivos/química , Indoles/química , Memantina/química , Microfluídica , Rimantadina/químicaRESUMEN
High performance liquid chromatography coupled with post-column derivatization is used for increasing the sensitivity and selectivity of the desirable analytes after the chromatographic separation. The transformation of the analytes can be conducted through the addition of a suitable reagent in the eluted stream or the ultraviolet irradiation of the eluted analytes, forming detectable derivatives for ultraviolet or fluorescence detectors. This review focuses on the developed methods using high performance liquid chromatography coupled with post-column derivatization for the determination of substances in food samples during the last two decades. The significance of the determination of each analyte in foods and the existing guidelines in each case are discussed. Preparation of the samples and the analytical methods are commented. For each analyte, official methods and commercially available systems and reagents are mentioned, as well.
Asunto(s)
Cromatografía Líquida de Alta Presión , Análisis de los Alimentos , Cromatografía Líquida de Alta Presión/métodos , Análisis de los Alimentos/métodosRESUMEN
Herein, we describe the utilization of an ionic liquid (IL)/Carbowax 20 M-functionalized sol-gel sorbent for the capsule phase microextraction of doxycycline in authentic human urine samples. This green sample preparation method combines stirring and filtration in a single, standalone sample preparation device, streamlining the sample preparation process. Additionally, it provides rapid extraction kinetics and high extraction efficiency. The experimental conditions (i.e. sorbent type, sample pH and volume, extraction time, ionic strength, elution solvent, and volume) affecting the extraction efficiency of the analyte were studied and optimized. The method was linear in the range of 0.1 - 5.0 µg/mL with a coefficient of determination higher than 0.995. The achieved LOD was found to be 0.02 µg/mL while the lower limit of quantitation (LLOQ) was 0.1 µg/mL. The IL/Carbowax 20 M-functionalized microextraction capsules were reusable at least 30 times for urine samples. The relative recoveries (% RR) ranged between 93.4 - 115.9 % while the precision (expressed as % RSD) was better than 8.1 % in all cases. The robustness of the microextraction procedure and the instrumental HPLC method were separately investigated using Plackett-Burman experimental designs. The analytical protocol demonstrated cost-effectiveness, ease of handling, and speed, leading to increased sample throughput. The green character of the developed method was evaluated using the Green Analytical Procedure Index (GAPI) and Blue Applicability Grade Index (BAGI). Finally, the method's applicability was demonstrated by analyzing authentic human urine samples after oral administration of a doxycycline-containing pharmaceutical formulation.