Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Blood ; 137(5): 624-636, 2021 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-32902645

RESUMEN

Immune checkpoint therapy has resulted in remarkable improvements in the outcome for certain cancers. To broaden the clinical impact of checkpoint targeting, we devised a strategy that couples targeting of the cytokine-inducible Src homology 2-containing (CIS) protein, a key negative regulator of interleukin 15 (IL-15) signaling, with fourth-generation "armored" chimeric antigen receptor (CAR) engineering of cord blood-derived natural killer (NK) cells. This combined strategy boosted NK cell effector function through enhancing the Akt/mTORC1 axis and c-MYC signaling, resulting in increased aerobic glycolysis. When tested in a lymphoma mouse model, this combined approach improved NK cell antitumor activity more than either alteration alone, eradicating lymphoma xenografts without signs of any measurable toxicity. We conclude that targeting a cytokine checkpoint further enhances the antitumor activity of IL-15-secreting armored CAR-NK cells by promoting their metabolic fitness and antitumor activity. This combined approach represents a promising milestone in the development of the next generation of NK cells for cancer immunotherapy.


Asunto(s)
Sangre Fetal/citología , Inmunoterapia Adoptiva , Interleucina-15/genética , Células Asesinas Naturales/efectos de los fármacos , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas Supresoras de la Señalización de Citocinas/antagonistas & inhibidores , Aerobiosis , Animales , Antígenos CD19/inmunología , Linfoma de Burkitt/patología , Linfoma de Burkitt/terapia , Sistemas CRISPR-Cas , Línea Celular Tumoral , Técnicas de Inactivación de Genes , Glucólisis , Humanos , Inhibidores de Puntos de Control Inmunológico/farmacología , Interleucina-15/metabolismo , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Células Asesinas Naturales/trasplante , Diana Mecanicista del Complejo 1 de la Rapamicina/fisiología , Ratones , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/fisiología , Proteínas Proto-Oncogénicas c-akt/fisiología , Receptores Quiméricos de Antígenos , Transducción de Señal/fisiología , Proteínas Supresoras de la Señalización de Citocinas/genética , Proteínas Supresoras de la Señalización de Citocinas/fisiología , Ensayos Antitumor por Modelo de Xenoinjerto
2.
Proc Natl Acad Sci U S A ; 113(40): 11243-11248, 2016 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-27647897

RESUMEN

BMI1 is a component of the Polycomb Repressive Complex 1 (PRC1), which plays a key role in maintaining epigenetic silencing during development. BMI1 also participates in gene silencing during DNA damage response, but the precise downstream function of BMI1 in gene silencing is unclear. Here we identified the UBR5 E3 ligase as a downstream factor of BMI1. We found that UBR5 forms damage-inducible nuclear foci in a manner dependent on the PRC1 components BMI1, RNF1 (RING1a), and RNF2 (RING1b). Whereas transcription is repressed at UV-induced lesions on chromatin, depletion of the PRC1 members or UBR5 alone derepressed transcription elongation at these sites, suggesting that UBR5 functions in a linear pathway with PRC1 in inducing gene silencing at lesions. Mass spectrometry (MS) analysis revealed that UBR5 associates with BMI1 as well as FACT components SPT16 and SSRP1. We found that UBR5 localizes to the UV-induced lesions along with SPT16. We show that UBR5 ubiquitinates SPT16, and depletion of UBR5 or BMI1 leads to an enlargement of SPT16 foci size at UV lesions, suggesting that UBR5 and BMI1 repress SPT16 enrichment at the damaged sites. Consistently, depletion of the FACT components effectively reversed the transcriptional derepression incurred in the UBR5 and BMI1 KO cells. Finally, UBR5 and BMI1 KO cells are hypersensitive to UV, which supports the notion that faulty RNA synthesis at damaged sites is harmful to the cell fitness. Altogether, these results suggest that BMI1 and UBR5 repress the polymerase II (Pol II)-mediated transcription at damaged sites, by negatively regulating the FACT-dependent Pol II elongation.


Asunto(s)
Cromatina/metabolismo , Complejo Represivo Polycomb 1/metabolismo , Proteínas Represoras/metabolismo , Transcripción Genética , Ubiquitina-Proteína Ligasas/metabolismo , Células HCT116 , Células HeLa , Humanos , Unión Proteica , Transducción de Señal , Elongación de la Transcripción Genética , Rayos Ultravioleta
3.
EMBO Rep ; 17(4): 519-29, 2016 04.
Artículo en Inglés | MEDLINE | ID: mdl-26917425

RESUMEN

Yap1 is a transcriptional co-activator of the Hippo pathway. The importance of Yap1 in early cell fate decision during embryogenesis has been well established, though its role in embryonic stem (ES) cells remains elusive. Here, we report that Yap1 plays crucial roles in normal differentiation rather than self-renewal of ES cells. Yap1-depleted ES cells maintain undifferentiated state with a typical colony morphology as well as robust alkaline phosphatase activity. These cells also retain comparable levels of the core pluripotent factors, such as Pou5f1 and Sox2, to the levels in wild-type ES cells without significant alteration of lineage-specific marker genes. Conversely, overexpression of Yap1 in ES cells promotes nuclear translocation of Yap1, resulting in disruption of self-renewal and triggering differentiation by up-regulating lineage-specific genes. Moreover, Yap1-deficient ES cells show impaired induction of lineage markers during differentiation. Collectively, our data demonstrate that Yap1 is a required factor for proper differentiation of mouse ES cells, while remaining dispensable for self-renewal.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Diferenciación Celular , Células Madre Embrionarias/fisiología , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/deficiencia , Fosfatasa Alcalina/metabolismo , Animales , Proteínas de Ciclo Celular , Línea Celular , Proliferación Celular , Vía de Señalización Hippo , Ratones , Factor 3 de Transcripción de Unión a Octámeros/genética , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Fosfoproteínas/deficiencia , Proteínas Serina-Treonina Quinasas/metabolismo , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXB1/metabolismo , Regulación hacia Arriba , Proteínas Señalizadoras YAP
4.
Stem Cells ; 34(5): 1284-96, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26731713

RESUMEN

MicroRNA expression profiling in human liver progenitor cells following hepatocytic differentiation identified miR-122 and miR-194 as the microRNAs most strongly upregulated during hepatocytic differentiation of progenitor cells. MiR-194 was also highly upregulated following hepatocytic differentiation of human embryonic stem cells (hESCs). Overexpression of miR-194 in progenitor cells accelerated their differentiation into hepatocytes, as measured by morphological features such as canaliculi and expression of hepatocytic markers. Overexpression of miR-194 in hESCs induced their spontaneous differentiation, a phenotype accompanied with accelerated loss of the pluripotent factors OCT4 and NANOG and decrease in mesoderm marker HAND1 expression. We then identified YAP1 as a direct target of miR-194. Inhibition of YAP1 strongly induced hepatocytic differentiation of progenitor cells and YAP1 overexpression reversed the miR-194-induced hepatocytic differentiation of progenitor cells. In conclusion, we identified miR-194 as a potent inducer of hepatocytic differentiation of progenitor cells and further identified YAP1 as a mediator of miR-194's effects on hepatocytic differentiation and liver progenitor cell fate. Stem Cells 2016;34:1284-1296.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Diferenciación Celular/genética , Hepatocitos/citología , Hepatocitos/metabolismo , MicroARNs/metabolismo , Fosfoproteínas/metabolismo , Secuencia de Bases , Línea Celular , Células Madre Embrionarias Humanas/citología , Células Madre Embrionarias Humanas/metabolismo , Humanos , Hígado/citología , MicroARNs/genética , Factores de Transcripción , Regulación hacia Arriba/genética , Proteínas Señalizadoras YAP
5.
Nat Med ; 30(3): 772-784, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38238616

RESUMEN

There is a pressing need for allogeneic chimeric antigen receptor (CAR)-immune cell therapies that are safe, effective and affordable. We conducted a phase 1/2 trial of cord blood-derived natural killer (NK) cells expressing anti-CD19 chimeric antigen receptor and interleukin-15 (CAR19/IL-15) in 37 patients with CD19+ B cell malignancies. The primary objectives were safety and efficacy, defined as day 30 overall response (OR). Secondary objectives included day 100 response, progression-free survival, overall survival and CAR19/IL-15 NK cell persistence. No notable toxicities such as cytokine release syndrome, neurotoxicity or graft-versus-host disease were observed. The day 30 and day 100 OR rates were 48.6% for both. The 1-year overall survival and progression-free survival were 68% and 32%, respectively. Patients who achieved OR had higher levels and longer persistence of CAR-NK cells. Receiving CAR-NK cells from a cord blood unit (CBU) with nucleated red blood cells ≤ 8 × 107 and a collection-to-cryopreservation time ≤ 24 h was the most significant predictor for superior outcome. NK cells from these optimal CBUs were highly functional and enriched in effector-related genes. In contrast, NK cells from suboptimal CBUs had upregulation of inflammation, hypoxia and cellular stress programs. Finally, using multiple mouse models, we confirmed the superior antitumor activity of CAR/IL-15 NK cells from optimal CBUs in vivo. These findings uncover new features of CAR-NK cell biology and underscore the importance of donor selection for allogeneic cell therapies. ClinicalTrials.gov identifier: NCT03056339 .


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Neoplasias , Receptores Quiméricos de Antígenos , Animales , Ratones , Humanos , Receptores Quiméricos de Antígenos/genética , Interleucina-15 , Células Asesinas Naturales , Inmunoterapia Adoptiva/efectos adversos , Antígenos CD19 , Proteínas Adaptadoras Transductoras de Señales
6.
Cancer Discov ; 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38900051

RESUMEN

Multiple factors in the design of a chimeric antigen receptor (CAR) influence CAR T-cell activity, with costimulatory signals being a key component. Yet, the impact of costimulatory domains on the downstream signaling and subsequent functionality of CAR-engineered natural killer (NK) cells remains largely unexplored. Here, we evaluated the impact of various costimulatory domains on CAR-NK cell activity, using a CD70-targeting CAR. We found that CD28, a costimulatory molecule not inherently present in mature NK cells, significantly enhanced the antitumor efficacy and long-term cytotoxicity of CAR-NK cells both in vitro and in multiple xenograft models of hematologic and solid tumors. Mechanistically, we showed that CD28 linked to CD3Z creates a platform that recruits critical kinases, such as LCK and ZAP70, initiating a signaling cascade that enhances CAR-NK cell function. Our study provides insights into how CD28 costimulation enhances CAR-NK cell function and supports its incorporation in NK-based CARs for cancer immunotherapy.

7.
Nat Med ; 28(10): 2133-2144, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36175679

RESUMEN

Trogocytosis is an active process that transfers surface material from targeted to effector cells. Using multiple in vivo tumor models and clinical data, we report that chimeric antigen receptor (CAR) activation in natural killer (NK) cells promoted transfer of the CAR cognate antigen from tumor to NK cells, resulting in (1) lower tumor antigen density, thus impairing the ability of CAR-NK cells to engage with their target, and (2) induced self-recognition and continuous CAR-mediated engagement, resulting in fratricide of trogocytic antigen-expressing NK cells (NKTROG+) and NK cell hyporesponsiveness. This phenomenon could be offset by a dual-CAR system incorporating both an activating CAR against the cognate tumor antigen and an NK self-recognizing inhibitory CAR that transferred a 'don't kill me' signal to NK cells upon engagement with their TROG+ siblings. This system prevented trogocytic antigen-mediated fratricide, while sparing activating CAR signaling against the tumor antigen, and resulted in enhanced CAR-NK cell activity.


Asunto(s)
Receptores Quiméricos de Antígenos , Antígenos de Neoplasias , Línea Celular Tumoral , Inmunoterapia Adoptiva/métodos , Células Asesinas Naturales , Receptores Quiméricos de Antígenos/metabolismo , Trogocitosis , Escape del Tumor
8.
J Immunother Cancer ; 10(12)2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36543374

RESUMEN

BACKGROUND: B cells play a pivotal role in regulating the immune response. The induction of B cell-mediated immunosuppressive function requires B cell activating signals. However, the mechanisms by which activated B cells mediate T-cell suppression are not fully understood. METHODS: We investigated the potential contribution of metabolic activity of activated B cells to T-cell suppression by performing in vitro experiments and by analyzing clinical samples using mass cytometry and single-cell RNA sequencing. RESULTS: Here we show that following activation, B cells acquire an immunoregulatory phenotype and promote T-cell suppression by metabolic competition. Activated B cells induced hypoxia in T cells in a cell-cell contact dependent manner by consuming more oxygen via an increase in their oxidative phosphorylation (OXPHOS). Moreover, activated B cells deprived T cells of glucose and produced lactic acid through their high glycolytic activity. Activated B cells thus inhibited the mammalian target of rapamycin pathway in T cells, resulting in suppression of T-cell cytokine production and proliferation. Finally, we confirmed the presence of tumor-associated B cells with high glycolytic and OXPHOS activities in patients with melanoma, associated with poor response to immune checkpoint blockade therapy. CONCLUSIONS: We have revealed for the first time the immunomodulatory effects of the metabolic activity of activated B cells and their possible role in suppressing antitumor T-cell responses. These findings add novel insights into immunometabolism and have important implications for cancer immunotherapy.


Asunto(s)
Linfocitos B , Linfocitos T , Inmunosupresores/farmacología , Sirolimus , Inmunoterapia
9.
Cell Rep ; 36(3): 109432, 2021 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-34270918

RESUMEN

Adoptive cell therapy with virus-specific T cells has been used successfully to treat life-threatening viral infections, supporting application of this approach to coronavirus disease 2019 (COVID-19). We expand severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) T cells from the peripheral blood of COVID-19-recovered donors and non-exposed controls using different culture conditions. We observe that the choice of cytokines modulates the expansion, phenotype, and hierarchy of antigenic recognition by SARS-CoV-2 T cells. Culture with interleukin (IL)-2/4/7, but not under other cytokine-driven conditions, results in more than 1,000-fold expansion in SARS-CoV-2 T cells with a retained phenotype, function, and hierarchy of antigenic recognition compared with baseline (pre-expansion) samples. Expanded cytotoxic T lymphocytes (CTLs) are directed against structural SARS-CoV-2 proteins, including the receptor-binding domain of Spike. SARS-CoV-2 T cells cannot be expanded efficiently from the peripheral blood of non-exposed controls. Because corticosteroids are used for management of severe COVID-19, we propose an efficient strategy to inactivate the glucocorticoid receptor gene (NR3C1) in SARS-CoV-2 CTLs using CRISPR-Cas9 gene editing.

10.
Front Immunol ; 12: 626098, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33717142

RESUMEN

Natural killer (NK) cells are innate lymphocytes recognized for their important role against tumor cells. NK cells expressing chimeric antigen receptors (CARs) have enhanced effector function against various type of cancer and are attractive contenders for the next generation of cancer immunotherapies. However, a number of factors have hindered the application of NK cells for cellular therapy, including their poor in vitro growth kinetics and relatively low starting percentages within the mononuclear cell fraction of peripheral blood or cord blood (CB). To overcome these limitations, we genetically-engineered human leukocyte antigen (HLA)-A- and HLA-B- K562 cells to enforce the expression of CD48, 4-1BBL, and membrane-bound IL-21 (mbIL21), creating a universal antigen presenting cell (uAPC) capable of stimulating their cognate receptors on NK cells. We have shown that uAPC can drive the expansion of both non-transduced (NT) and CAR-transduced CB derived NK cells by >900-fold in 2 weeks of co-culture with excellent purity (>99.9%) and without indications of senescence/exhaustion. We confirmed that uAPC-expanded research- and clinical-grade NT and CAR-transduced NK cells have higher metabolic fitness and display enhanced effector function against tumor targets compared to the corresponding cell fractions cultured without uAPCs. This novel approach allowed the expansion of highly pure GMP-grade CAR NK cells at optimal cell numbers to be used for adoptive CAR NK cell-based cancer immunotherapy.


Asunto(s)
Células Presentadoras de Antígenos/metabolismo , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Receptores Quiméricos de Antígenos/genética , Animales , Ingeniería Celular , Línea Celular Tumoral , Proliferación Celular , Citotoxicidad Inmunológica , Sangre Fetal , Antígenos HLA/genética , Humanos , Células K562 , Ratones , Ratones Noqueados , Receptores de Células Asesinas Naturales/metabolismo , Transcriptoma , Transducción Genética , Ensayos Antitumor por Modelo de Xenoinjerto
11.
Clin Cancer Res ; 27(13): 3744-3756, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-33986022

RESUMEN

PURPOSE: Natural killer (NK)-cell recognition and function against NK-resistant cancers remain substantial barriers to the broad application of NK-cell immunotherapy. Potential solutions include bispecific engagers that target NK-cell activity via an NK-activating receptor when simultaneously targeting a tumor-specific antigen, as well as enhancing functionality using IL12/15/18 cytokine pre-activation. EXPERIMENTAL DESIGN: We assessed single-cell NK-cell responses stimulated by the tetravalent bispecific antibody AFM13 that binds CD30 on leukemia/lymphoma targets and CD16A on various types of NK cells using mass cytometry and cytotoxicity assays. The combination of AFM13 and IL12/15/18 pre-activation of blood and cord blood-derived NK cells was investigated in vitro and in vivo. RESULTS: We found heterogeneity within AFM13-directed conventional blood NK cell (cNK) responses, as well as consistent AFM13-directed polyfunctional activation of mature NK cells across donors. NK-cell source also impacted the AFM13 response, with cNK cells from healthy donors exhibiting superior responses to those from patients with Hodgkin lymphoma. IL12/15/18-induced memory-like NK cells from peripheral blood exhibited enhanced killing of CD30+ lymphoma targets directed by AFM13, compared with cNK cells. Cord-blood NK cells preactivated with IL12/15/18 and ex vivo expanded with K562-based feeders also exhibited enhanced killing with AFM13 stimulation via upregulation of signaling pathways related to NK-cell effector function. AFM13-NK complex cells exhibited enhanced responses to CD30+ lymphomas in vitro and in vivo. CONCLUSIONS: We identify AFM13 as a promising combination with cytokine-activated adult blood or cord-blood NK cells to treat CD30+ hematologic malignancies, warranting clinical trials with these novel combinations.


Asunto(s)
Anticuerpos Biespecíficos , Inmunoterapia , Células Asesinas Naturales , Leucemia , Linfoma , Humanos , Anticuerpos Biespecíficos/uso terapéutico , Sangre/efectos de los fármacos , Sangre/inmunología , Células Cultivadas , Terapia Combinada , Citocinas/farmacología , Sangre Fetal/efectos de los fármacos , Sangre Fetal/inmunología , Inmunoterapia/métodos , Antígeno Ki-1/inmunología , Células Asesinas Naturales/inmunología , Leucemia/terapia , Linfoma/terapia , Receptores de IgG/inmunología
12.
Front Immunol ; 12: 631353, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34017325

RESUMEN

Acute graft-vs.-host (GVHD) disease remains a common complication of allogeneic stem cell transplantation with very poor outcomes once the disease becomes steroid refractory. Mesenchymal stem cells (MSCs) represent a promising therapeutic approach for the treatment of GVHD, but so far this strategy has had equivocal clinical efficacy. Therapies using MSCs require optimization taking advantage of the plasticity of these cells in response to different microenvironments. In this study, we aimed to optimize cord blood tissue derived MSCs (CBti MSCs) by priming them using a regimen of inflammatory cytokines. This approach led to their metabolic reprogramming with enhancement of their glycolytic capacity. Metabolically reprogrammed CBti MSCs displayed a boosted immunosuppressive potential, with superior immunomodulatory and homing properties, even after cryopreservation and thawing. Mechanistically, primed CBti MSCs significantly interfered with glycolytic switching and mTOR signaling in T cells, suppressing T cell proliferation and ensuing polarizing toward T regulatory cells. Based on these data, we generated a Good Manufacturing Process (GMP) Laboratory protocol for the production and cryopreservation of primed CBti MSCs for clinical use. Following thawing, these cryopreserved GMP-compliant primed CBti MSCs significantly improved outcomes in a xenogenic mouse model of GVHD. Our data support the concept that metabolic profiling of MSCs can be used as a surrogate for their suppressive potential in conjunction with conventional functional methods to support their therapeutic use in GVHD or other autoimmune disorders.


Asunto(s)
Técnicas de Reprogramación Celular/métodos , Reprogramación Celular/fisiología , Sangre Fetal/citología , Enfermedad Injerto contra Huésped/prevención & control , Células Madre Mesenquimatosas/metabolismo , Animales , Reprogramación Celular/efectos de los fármacos , Reprogramación Celular/inmunología , Citocinas/farmacología , Femenino , Trasplante de Células Madre Hematopoyéticas , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/inmunología , Ratones , Ratones Endogámicos NOD , Control de Calidad
13.
J Clin Invest ; 131(14)2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-34138753

RESUMEN

Glioblastoma multiforme (GBM), the most aggressive brain cancer, recurs because glioblastoma stem cells (GSCs) are resistant to all standard therapies. We showed that GSCs, but not normal astrocytes, are sensitive to lysis by healthy allogeneic natural killer (NK) cells in vitro. Mass cytometry and single-cell RNA sequencing of primary tumor samples revealed that GBM tumor-infiltrating NK cells acquired an altered phenotype associated with impaired lytic function relative to matched peripheral blood NK cells from patients with GBM or healthy donors. We attributed this immune evasion tactic to direct cell-to-cell contact between GSCs and NK cells via αv integrin-mediated TGF-ß activation. Treatment of GSC-engrafted mice with allogeneic NK cells in combination with inhibitors of integrin or TGF-ß signaling or with TGFBR2 gene-edited allogeneic NK cells prevented GSC-induced NK cell dysfunction and tumor growth. These findings reveal an important mechanism of NK cell immune evasion by GSCs and suggest the αv integrin/TGF-ß axis as a potentially useful therapeutic target in GBM.


Asunto(s)
Glioblastoma/inmunología , Integrinas/inmunología , Células Asesinas Naturales/inmunología , Proteínas de Neoplasias/inmunología , Células Madre Neoplásicas/inmunología , Factor de Crecimiento Transformador beta/inmunología , Animales , Femenino , Glioblastoma/genética , Glioblastoma/patología , Glioblastoma/terapia , Xenoinjertos , Humanos , Integrinas/genética , Células Asesinas Naturales/patología , Masculino , Ratones , Proteínas de Neoplasias/genética , Trasplante de Neoplasias , Células Madre Neoplásicas/patología , Receptor Tipo II de Factor de Crecimiento Transformador beta/genética , Receptor Tipo II de Factor de Crecimiento Transformador beta/inmunología , Factor de Crecimiento Transformador beta/genética
14.
bioRxiv ; 2020 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-32995792

RESUMEN

Adoptive cell therapy with viral-specific T cells has been successfully used to treat life-threatening viral infections, supporting the application of this approach against COVID-19. We expanded SARS-CoV-2 T-cells from the peripheral blood of COVID-19-recovered donors and non-exposed controls using different culture conditions. We observed that the choice of cytokines modulates the expansion, phenotype and hierarchy of antigenic recognition by SARS-CoV-2 T-cells. Culture with IL-2/4/7 but not other cytokine-driven conditions resulted in >1000 fold expansion in SARS-CoV-2 T-cells with a retained phenotype, function and hierarchy of antigenic recognition when compared to baseline (pre-expansion) samples. Expanded CTLs were directed against structural SARS-CoV-2 proteins, including the receptor-binding domain of Spike. SARS-CoV-2 T-cells could not be efficiently expanded from the peripheral blood of non-exposed controls. Since corticosteroids are used for the management of severe COVID-19, we developed an efficient strategy to inactivate the glucocorticoid receptor gene ( NR3C1 ) in SARS-CoV-2 CTLs using CRISPR-Cas9 gene editing.

15.
Blood Adv ; 4(14): 3357-3367, 2020 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-32717029

RESUMEN

Virus-specific T cells have proven highly effective for the treatment of severe and drug-refractory infections after hematopoietic stem cell transplant (HSCT). However, the efficacy of these cells is hindered by the use of glucocorticoids, often given to patients for the management of complications such as graft-versus-host disease. To address this limitation, we have developed a novel strategy for the rapid generation of good manufacturing practice (GMP)-grade glucocorticoid-resistant multivirus-specific T cells (VSTs) using clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9) gene-editing technology. We have shown that deleting the nuclear receptor subfamily 3 group C member 1 (NR3C1; the gene encoding for the glucocorticoid receptor) renders VSTs resistant to the lymphocytotoxic effect of glucocorticoids. NR3C1-knockout (KO) VSTs kill their targets and proliferate successfully in the presence of high doses of dexamethasone both in vitro and in vivo. Moreover, we developed a protocol for the rapid generation of GMP-grade NR3C1 KO VSTs with high on-target activity and minimal off-target editing. These genetically engineered VSTs promise to be a novel approach for the treatment of patients with life-threatening viral infections post-HSCT on glucocorticoid therapy.


Asunto(s)
Sistemas CRISPR-Cas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Edición Génica , Humanos , Receptores de Glucocorticoides/genética , Linfocitos T
17.
Stem Cell Res ; 26: 95-102, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29272857

RESUMEN

During early development in placental mammals, proper trophoblast lineage development is essential for implantation and placentation. Defects in this lineage can cause early pregnancy failures and other pregnancy disorders. However, transcription factors controlling trophoblast development remain poorly understood. Here, we utilize Fosl1, previously implicated in trophoblast giant cell development as a member of the AP-1 complex, to trans-differentiate embryonic stem (ES) cells to trophoblast lineage-like cells. We first show that the ectopic expression of Fosl1 is sufficient to induce trophoblast-specific gene expression programs in ES cells. Surprisingly, we find that this transcriptional reprogramming occurs independently of changes in levels of ES cell core factors during the cell fate change. This suggests that Fosl1 acts in a novel way to orchestrate the ES to trophoblast cell fate conversion compared to previously known reprogramming factors. Mapping of Fosl1 targets reveals that Fosl1 directly activates TE lineage-specific genes as a pioneer factor. Our work suggests Fosl1 may be used to reprogram ES cells into differentiated cell types in trophoblast lineage, which not only enhances our knowledge of global trophoblast gene regulation but also may provide a future therapeutic tool for generating induced trophoblast cells from patient-derived pluripotent stem cells.


Asunto(s)
Diferenciación Celular , Linaje de la Célula , Células Madre Embrionarias/metabolismo , Regulación del Desarrollo de la Expresión Génica , Células Madre Pluripotentes/metabolismo , Proteínas Proto-Oncogénicas c-fos/metabolismo , Trofoblastos/metabolismo , Animales , Células Cultivadas , Células Madre Embrionarias/citología , Femenino , Ratones , Células Madre Pluripotentes/citología , Embarazo , Proteínas Proto-Oncogénicas c-fos/genética , Trofoblastos/citología
18.
Cell Rep ; 24(6): 1471-1483, 2018 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-30089259

RESUMEN

Ataxia-telangiectasia mutated (ATM) is a serine/threonine kinase that coordinates the response to DNA double-strand breaks and oxidative stress. NKX3.1, a prostate-specific transcription factor, was recently shown to directly stimulate ATM kinase activity through its highly conserved homeodomain. Here, we show that other members of the homeodomain family can also regulate ATM kinase activity. We found that six representative homeodomain proteins (NKX3.1, NKX2.2, TTF1, NKX2.5, HOXB7, and CDX2) physically and functionally interact with ATM and with the Mre11-Rad50-Nbs1 (MRN) complex that activates ATM in combination with DNA double-strand breaks. The binding between homeodomain proteins and ATM stimulates oxidation-induced ATM activation in vitro but inhibits ATM kinase activity in the presence of MRN and DNA and in human cells. These findings suggest that many tissue-specific homeodomain proteins may regulate ATM activity during development and differentiation and that this is a unique mechanism for the control of the DNA damage response.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteínas de Homeodominio/metabolismo , Proteína Homeobox Nkx-2.2 , Humanos , Proteínas Nucleares , Factores de Transcripción , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA