Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Cell ; 142(1): 39-51, 2010 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-20603013

RESUMEN

An in vivo screen was performed in search of chemicals capable of enhancing neuron formation in the hippocampus of adult mice. Eight of 1000 small molecules tested enhanced neuron formation in the subgranular zone of the dentate gyrus. Among these was an aminopropyl carbazole, designated P7C3, endowed with favorable pharmacological properties. In vivo studies gave evidence that P7C3 exerts its proneurogenic activity by protecting newborn neurons from apoptosis. Mice missing the gene encoding neuronal PAS domain protein 3 (NPAS3) are devoid of hippocampal neurogenesis and display malformation and electrophysiological dysfunction of the dentate gyrus. Prolonged administration of P7C3 to npas3(-/-) mice corrected these deficits by normalizing levels of apoptosis of newborn hippocampal neurons. Prolonged administration of P7C3 to aged rats also enhanced neurogenesis in the dentate gyrus, impeded neuron death, and preserved cognitive capacity as a function of terminal aging. PAPERCLIP:


Asunto(s)
Carbazoles/farmacología , Evaluación Preclínica de Medicamentos , Neurogénesis/efectos de los fármacos , Neuronas/citología , Fármacos Neuroprotectores/farmacología , Envejecimiento/efectos de los fármacos , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Carbazoles/química , Cognición/efectos de los fármacos , Giro Dentado/citología , Giro Dentado/fisiología , Femenino , Hipocampo/citología , Hipocampo/efectos de los fármacos , Hipocampo/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Membranas Mitocondriales/efectos de los fármacos , Membranas Mitocondriales/metabolismo , Fármacos Neuroprotectores/química , Ratas
2.
Nature ; 526(7573): 430-4, 2015 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-26469053

RESUMEN

Deep brain stimulation (DBS) has improved the prospects for many individuals with diseases affecting motor control, and recently it has shown promise for improving cognitive function as well. Several studies in individuals with Alzheimer disease and in amnesic rats have demonstrated that DBS targeted to the fimbria-fornix, the region that appears to regulate hippocampal activity, can mitigate defects in hippocampus-dependent memory. Despite these promising results, DBS has not been tested for its ability to improve cognition in any childhood intellectual disability disorder. Such disorders are a pressing concern: they affect as much as 3% of the population and involve hundreds of different genes. We proposed that stimulating the neural circuits that underlie learning and memory might provide a more promising route to treating these otherwise intractable disorders than seeking to adjust levels of one molecule at a time. We therefore studied the effects of forniceal DBS in a well-characterized mouse model of Rett syndrome (RTT), which is a leading cause of intellectual disability in females. Caused by mutations that impair the function of MeCP2 (ref. 6), RTT appears by the second year of life in humans, causing profound impairment in cognitive, motor and social skills, along with an array of neurological features. RTT mice, which reproduce the broad phenotype of this disorder, also show clear deficits in hippocampus-dependent learning and memory and hippocampal synaptic plasticity. Here we show that forniceal DBS in RTT mice rescues contextual fear memory as well as spatial learning and memory. In parallel, forniceal DBS restores in vivo hippocampal long-term potentiation and hippocampal neurogenesis. These results indicate that forniceal DBS might mitigate cognitive dysfunction in RTT.


Asunto(s)
Estimulación Encefálica Profunda , Fórnix/fisiología , Hipocampo/fisiología , Hipocampo/fisiopatología , Memoria/fisiología , Síndrome de Rett/psicología , Síndrome de Rett/terapia , Animales , Cognición/fisiología , Trastornos del Conocimiento/complicaciones , Trastornos del Conocimiento/fisiopatología , Trastornos del Conocimiento/psicología , Trastornos del Conocimiento/terapia , Modelos Animales de Enfermedad , Miedo/fisiología , Miedo/psicología , Femenino , Fórnix/citología , Fórnix/fisiopatología , Hipocampo/citología , Potenciación a Largo Plazo/fisiología , Ratones , Neurogénesis , Síndrome de Rett/genética , Síndrome de Rett/fisiopatología , Aprendizaje Espacial/fisiología
3.
J Bone Joint Surg Am ; 105(1): 42-52, 2023 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-36598474

RESUMEN

BACKGROUND: Gram-negative periprosthetic joint infections (GN-PJIs) present unique challenges. Our aim was to establish a clinically representative GN-PJI model that recapitulates biofilm formation in vivo. We also hypothesized that biofilm formation on the implant surface would affect its ability to osseointegrate. METHODS: Three-dimensionally-printed medical-grade titanium hip implants were used to replace the femoral heads of male Sprague-Dawley rats. GN-PJI was induced using 2 bioluminescent Pseudomonas aeruginosa strains: a reference strain (PA14-lux) and a mutant biofilm-defective strain (ΔflgK-lux). Infection was monitored in real time using an in vivo imaging system (IVIS) and magnetic resonance imaging (MRI). Bacterial loads were quantified utilizing the viable colony count. Biofilm formation at the bone-implant interface was visualized using field-emission scanning electron microscopy (FE-SEM). Implant stability, as an outcome, was directly assessed by quantifying osseointegration using microcomputed tomography, and indirectly assessed by identifying gait-pattern changes. RESULTS: Bioluminescence detected by the IVIS was focused on the hip region and demonstrated localized infection, with greater ability of PA14-lux to persist in the model compared with the ΔflgK-lux strain, which is defective in biofilm formation. This was corroborated by MRI, as PA14-lux induced relatively larger implant-related abscesses. Biofilm formation at the bone-implant interface induced by PA14-lux was visualized using FE-SEM versus defective-biofilm formation by ΔflgK-lux. Quantitatively, the average viable colony count of the sonicated implants, in colony-forming units/mL, was 3.77 × 108 for PA14-lux versus 3.65 × 103 for ΔflgK-lux, with a 95% confidence interval around the difference of 1.45 × 108 to 6.08 × 108 (p = 0.0025). This difference in the ability to persist in the model was reflected significantly on implant osseointegration, with a mean intersection surface of 4.1 × 106 ± 1.99 × 106 µm2 for PA14-lux versus 6.44 × 106 ± 2.53 × 106 µm2 for ΔflgK-lux and 7.08 × 106 ± 1.55 × 106 µm2 for the noninfected control (p = 0.048). CONCLUSIONS: To our knowledge, this proposed, novel in vivo biofilm-based model is the most clinically representative for GN-PJI to date, since animals can bear weight on the implant, poor osseointegration was associated with biofilm formation, and localized PJI was assessed by various modalities. CLINICAL RELEVANCE: This model will allow for more reliable testing of novel biofilm-targeting therapeutics.


Asunto(s)
Artritis Infecciosa , Hemiartroplastia , Prótesis de Cadera , Infecciones Relacionadas con Prótesis , Ratas , Masculino , Animales , Infecciones Relacionadas con Prótesis/microbiología , Microtomografía por Rayos X , Ratas Sprague-Dawley , Biopelículas , Prótesis de Cadera/efectos adversos , Artritis Infecciosa/tratamiento farmacológico , Antibacterianos/uso terapéutico
4.
J Neurosci ; 31(26): 9772-86, 2011 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-21715642

RESUMEN

Transcriptional regulation is a critical mechanism in the birth, specification, and differentiation of granule neurons in the adult hippocampus. One of the first negative-acting transcriptional regulators implicated in vertebrate development is repressor element 1-silencing transcription/neuron-restrictive silencer factor (REST/NRSF)--thought to regulate hundreds of neuron-specific genes--yet its function in the adult brain remains elusive. Here we report that REST/NRSF is required to maintain the adult neural stem cell (NSC) pool and orchestrate stage-specific differentiation. REST/NRSF recruits CoREST and mSin3A corepressors to stem cell chromatin for the regulation of pro-neuronal target genes to prevent precocious neuronal differentiation in cultured adult NSCs. Moreover, mice lacking REST/NRSF specifically in NSCs display a transient increase in adult neurogenesis that leads to a loss in the neurogenic capacity of NSCs and eventually diminished granule neurons. Our work identifies REST/NRSF as a master negative regulator of adult NSC differentiation and offers a potential molecular target for neuroregenerative approaches.


Asunto(s)
Encéfalo/metabolismo , Células-Madre Neurales/fisiología , Neurogénesis/fisiología , Neuronas/metabolismo , Proteínas Represoras/metabolismo , Animales , Western Blotting , Células Cultivadas , Inmunoprecipitación de Cromatina , Inmunoprecipitación , Ratones , Ratones Noqueados , Proteínas Represoras/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
5.
Bone Joint J ; 103-B(7 Supple B): 9-16, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34192921

RESUMEN

AIMS: The aims of this study were to develop an in vivo model of periprosthetic joint infection (PJI) in cemented hip hemiarthroplasty, and to monitor infection and biofilm formation in real-time. METHODS: Sprague-Dawley rats underwent cemented hip hemiarthroplasty via the posterior approach with pre- and postoperative gait assessments. Infection with Staphylococcus aureus Xen36 was monitored with in vivo photoluminescent imaging in real-time. Pre- and postoperative gait analyses were performed and compared. Postmortem micro (m) CT was used to assess implant integration; field emission scanning electron microscopy (FE-SEM) was used to assess biofilm formation on prosthetic surfaces. RESULTS: All animals tolerated surgery well, with preservation of gait mechanics and weightbearing in control individuals. Postoperative in vivo imaging demonstrated predictable evolution of infection with logarithmic signal decay coinciding with abscess formation. Postmortem mCT qualitative volumetric analysis showed high contact area and both cement-bone and cement-implant interdigitation. FE-SEM revealed biofilm formation on the prosthetic head. CONCLUSION: This study demonstrates the utility of a new, high-fidelity model of in vivo PJI using cemented hip hemiarthroplasty in rats. Inoculation with bioluminescent bacteria allows for non-invasive, real-time monitoring of infection. Cite this article: Bone Joint J 2021;103-B(7 Supple B):9-16.


Asunto(s)
Hemiartroplastia , Prótesis de Cadera , Infecciones Relacionadas con Prótesis/diagnóstico por imagen , Infecciones Relacionadas con Prótesis/microbiología , Infecciones Estafilocócicas/diagnóstico por imagen , Infecciones Estafilocócicas/microbiología , Animales , Distinciones y Premios , Biopelículas , Cementos para Huesos , Modelos Animales de Enfermedad , Marcha , Masculino , Microscopía Electrónica de Rastreo , Impresión Tridimensional , Ratas , Ratas Sprague-Dawley , Microtomografía por Rayos X
6.
Elife ; 92020 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-32159514

RESUMEN

Methylated cytosine is an effector of epigenetic gene regulation. In the brain, Dnmt3a is the sole 'writer' of atypical non-CpG methylation (mCH), and MeCP2 is the only known 'reader' for mCH. We asked if MeCP2 is the sole reader for Dnmt3a dependent methylation by comparing mice lacking either protein in GABAergic inhibitory neurons. Loss of either protein causes overlapping and distinct features from the behavioral to molecular level. Loss of Dnmt3a causes global loss of mCH and a subset of mCG sites resulting in more widespread transcriptional alterations and severe neurological dysfunction than MeCP2 loss. These data suggest that MeCP2 is responsible for reading only part of the Dnmt3a dependent methylation in the brain. Importantly, the impact of MeCP2 on genes differentially expressed in both models shows a strong dependence on mCH, but not Dnmt3a dependent mCG, consistent with mCH playing a central role in the pathogenesis of Rett Syndrome.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas/metabolismo , Neuronas GABAérgicas/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Proteína 2 de Unión a Metil-CpG/metabolismo , Síndrome de Rett/metabolismo , Animales , ADN (Citosina-5-)-Metiltransferasas/genética , ADN Metiltransferasa 3A , Femenino , Predisposición Genética a la Enfermedad , Masculino , Proteína 2 de Unión a Metil-CpG/genética , Ratones , Síndrome de Rett/genética
7.
Genetics ; 215(4): 1055-1066, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32554600

RESUMEN

Dravet syndrome is a developmental epileptic encephalopathy caused by pathogenic variation in SCN1A To characterize the pathogenic substitution (p.H939R) of a local individual with Dravet syndrome, fibroblast cells from the individual were reprogrammed to pluripotent stem cells and differentiated into neurons. Sodium currents of these neurons were compared with healthy control induced neurons. A novel Scn1aH939R/+ mouse model was generated with the p.H939R substitution. Immunohistochemistry and electrophysiological experiments were performed on hippocampal slices of Scn1aH939R/+ mice. We found that the sodium currents recorded in the proband-induced neurons were significantly smaller and slower compared to wild type (WT). The resting membrane potential and spike amplitude were significantly depolarized in the proband-induced neurons. Similar differences in resting membrane potential and spike amplitude were observed in the interneurons of the hippocampus of Scn1aH939R/+ mice. The Scn1aH939R/+ mice showed the characteristic features of a Dravet-like phenotype: increased mortality and both spontaneous and heat-induced seizures. Immunohistochemistry showed a reduction in amount of parvalbumin and vesicular acetylcholine transporter in the hippocampus of Scn1aH939R/+ compared to WT mice. Overall, these results underline hyper-excitability of the hippocampal CA1 circuit of this novel mouse model of Dravet syndrome which, under certain conditions, such as temperature, can trigger seizure activity. This hyper-excitability is due to the altered electrophysiological properties of pyramidal neurons and interneurons which are caused by the dysfunction of the sodium channel bearing the p.H939R substitution. This novel Dravet syndrome model also highlights the reduction in acetylcholine and the contribution of pyramidal cells, in addition to interneurons, to network hyper-excitability.


Asunto(s)
Región CA1 Hipocampal/patología , Modelos Animales de Enfermedad , Epilepsias Mioclónicas/patología , Fibroblastos/patología , Células Madre Pluripotentes Inducidas/patología , Interneuronas/patología , Células Piramidales/patología , Animales , Región CA1 Hipocampal/metabolismo , Electrofisiología , Epilepsias Mioclónicas/genética , Epilepsias Mioclónicas/metabolismo , Femenino , Fibroblastos/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Interneuronas/metabolismo , Masculino , Potenciales de la Membrana , Ratones , Ratones Endogámicos C57BL , Mutación , Canal de Sodio Activado por Voltaje NAV1.1/genética , Canal de Sodio Activado por Voltaje NAV1.1/metabolismo , Células Piramidales/metabolismo
8.
Front Neurol ; 11: 593554, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33193060

RESUMEN

Rett Syndrome (RTT) is a neurodevelopmental disorder caused by loss of function of the transcriptional regulator Methyl-CpG-Binding Protein 2 (MeCP2). In addition to the characteristic loss of hand function and spoken language after the first year of life, people with RTT also have a variety of physiological and autonomic abnormalities including disrupted breathing rhythms characterized by bouts of hyperventilation and an increased frequency of apnea. These breathing abnormalities, that likely involve alterations in both the circuitry underlying respiratory pace making and those underlying breathing response to environmental stimuli, may underlie the sudden unexpected death seen in a significant fraction of people with RTT. In fact, mice lacking MeCP2 function exhibit abnormal breathing rate response to acute hypoxia and maintain a persistently elevated breathing rate rather than showing typical hypoxic ventilatory decline that can be observed among their wild-type littermates. Using genetic and pharmacological tools to better understand the course of this abnormal hypoxic breathing rate response and the neurons driving it, we learned that the abnormal hypoxic breathing response is acquired as the animals mature, and that MeCP2 function is required within excitatory, inhibitory, and modulatory populations for a normal hypoxic breathing rate response. Furthermore, mice lacking MeCP2 exhibit decreased hypoxia-induced neuronal activity within the nucleus tractus solitarius of the dorsal medulla. Overall, these data provide insight into the neurons driving the circuit dysfunction that leads to breathing abnormalities upon loss of MeCP2. The discovery that combined dysfunction across multiple neuronal populations contributes to breathing dysfunction may provide insight into sudden unexpected death in RTT.

9.
J Neurosci ; 27(22): 5967-75, 2007 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-17537967

RESUMEN

The conceptual understanding of hippocampal function has been challenged recently by the finding that new granule cells are born throughout life in the mammalian dentate gyrus (DG). The number of newborn neurons is dynamically regulated by a variety of factors. Kainic acid-induced seizures, a rodent model of human temporal lobe epilepsy, strongly induce the proliferation of DG neurogenic progenitor cells and are also associated with long-term cognitive impairment. We show here that the antiepileptic drug valproic acid (VPA) potently blocked seizure-induced neurogenesis, an effect that appeared to be mainly mediated by inhibiting histone deacetylases (HDAC) and normalizing HDAC-dependent gene expression within the epileptic dentate area. Strikingly, the inhibition of aberrant neurogenesis protected the animals from seizure-induced cognitive impairment in a hippocampus-dependent learning task. We propose that seizure-generated granule cells have the potential to interfere with hippocampal function and contribute to cognitive impairment caused by epileptic activity within the hippocampal circuitry. Furthermore, our data indicate that the effectiveness of VPA as an antiepileptic drug may be partially explained by the HDAC-dependent inhibition of aberrant neurogenesis induced by seizure activity within the adult hippocampus.


Asunto(s)
Trastornos del Conocimiento/patología , Epigénesis Genética/fisiología , Neuronas/citología , Neuronas/fisiología , Convulsiones/patología , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Animales , Trastornos del Conocimiento/etiología , Trastornos del Conocimiento/prevención & control , Epigénesis Genética/efectos de los fármacos , Femenino , Hipocampo/citología , Hipocampo/efectos de los fármacos , Hipocampo/fisiología , Neuronas/efectos de los fármacos , Ratas , Ratas Endogámicas F344 , Convulsiones/complicaciones , Convulsiones/prevención & control , Ácido Valproico/farmacología , Ácido Valproico/uso terapéutico
10.
Elife ; 52016 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-27328321

RESUMEN

The postnatal neurodevelopmental disorder Rett syndrome, caused by mutations in MECP2, produces a diverse array of symptoms, including loss of language, motor, and social skills and the development of hand stereotypies, anxiety, tremor, ataxia, respiratory dysrhythmias, and seizures. Surprisingly, despite the diversity of these features, we have found that deleting Mecp2 only from GABAergic inhibitory neurons in mice replicates most of this phenotype. Here we show that genetically restoring Mecp2 expression only in GABAergic neurons of male Mecp2 null mice enhanced inhibitory signaling, extended lifespan, and rescued ataxia, apraxia, and social abnormalities but did not rescue tremor or anxiety. Female Mecp2(+/-) mice showed a less dramatic but still substantial rescue. These findings highlight the critical regulatory role of GABAergic neurons in certain behaviors and suggest that modulating the excitatory/inhibitory balance through GABAergic neurons could prove a viable therapeutic option in Rett syndrome.


Asunto(s)
Neuronas GABAérgicas/fisiología , Expresión Génica , Proteína 2 de Unión a Metil-CpG/biosíntesis , Síndrome de Rett/genética , Síndrome de Rett/patología , Animales , Modelos Animales de Enfermedad , Femenino , Masculino , Proteína 2 de Unión a Metil-CpG/genética , Ratones , Ratones Noqueados
11.
Neuron ; 91(4): 739-747, 2016 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-27499081

RESUMEN

Loss- and gain-of-function mutations in methyl-CpG-binding protein 2 (MECP2) underlie two distinct neurological syndromes with strikingly similar features, but the synaptic and circuit-level changes mediating these shared features are undefined. Here we report three novel signs of neural circuit dysfunction in three mouse models of MECP2 disorders (constitutive Mecp2 null, mosaic Mecp2(+/-), and MECP2 duplication): abnormally elevated synchrony in the firing activity of hippocampal CA1 pyramidal neurons, an impaired homeostatic response to perturbations of excitatory-inhibitory balance, and decreased excitatory synaptic response in inhibitory neurons. Conditional mutagenesis studies revealed that MeCP2 dysfunction in excitatory neurons mediated elevated synchrony at baseline, while MeCP2 dysfunction in inhibitory neurons increased susceptibility to hypersynchronization in response to perturbations. Chronic forniceal deep brain stimulation (DBS), recently shown to rescue hippocampus-dependent learning and memory in Mecp2(+/-) (Rett) mice, also rescued all three features of hippocampal circuit dysfunction in these mice.


Asunto(s)
Región CA1 Hipocampal/fisiopatología , Estimulación Encefálica Profunda , Fórnix/fisiología , Proteína 2 de Unión a Metil-CpG/fisiología , Inhibición Neural/fisiología , Síndrome de Rett/fisiopatología , Animales , Modelos Animales de Enfermedad , Femenino , Duplicación de Gen/genética , Homeostasis/fisiología , Proteína 2 de Unión a Metil-CpG/genética , Ratones , Mosaicismo , Mutación/fisiología , Células Piramidales/fisiología , Síndrome de Rett/genética
12.
Neuron ; 88(4): 651-8, 2015 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-26590342

RESUMEN

Inhibitory neurons are critical for proper brain function, and their dysfunction is implicated in several disorders, including autism, schizophrenia, and Rett syndrome. These neurons are heterogeneous, and it is unclear which subtypes contribute to specific neurological phenotypes. We deleted Mecp2, the mouse homolog of the gene that causes Rett syndrome, from the two most populous subtypes, parvalbumin-positive (PV+) and somatostatin-positive (SOM+) neurons. Loss of MeCP2 partially impairs the affected neuron, allowing us to assess the function of each subtype without profound disruption of neuronal circuitry. We found that mice lacking MeCP2 in either PV+ or SOM+ neurons have distinct, non-overlapping neurological features: mice lacking MeCP2 in PV+ neurons developed motor, sensory, memory, and social deficits, whereas those lacking MeCP2 in SOM+ neurons exhibited seizures and stereotypies. Our findings indicate that PV+ and SOM+ neurons contribute complementary aspects of the Rett phenotype and may have modular roles in regulating specific behaviors.


Asunto(s)
Proteína 2 de Unión a Metil-CpG/genética , Neuronas/metabolismo , Parvalbúminas/metabolismo , Síndrome de Rett/genética , Somatostatina/metabolismo , Animales , Conducta Animal , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Técnicas de Inactivación de Genes , Memoria , Ratones , Ratones Noqueados , Actividad Motora/genética , Fenotipo , Convulsiones/genética , Sensación/genética , Conducta Social , Conducta Estereotipada
13.
Nat Commun ; 6: 6606, 2015 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-25808087

RESUMEN

Acute seizures after a severe brain insult can often lead to epilepsy and cognitive impairment. Aberrant hippocampal neurogenesis follows the insult but the role of adult-generated neurons in the development of chronic seizures or associated cognitive deficits remains to be determined. Here we show that the ablation of adult neurogenesis before pilocarpine-induced acute seizures in mice leads to a reduction in chronic seizure frequency. We also show that ablation of neurogenesis normalizes epilepsy-associated cognitive deficits. Remarkably, the effect of ablating adult neurogenesis before acute seizures is long lasting as it suppresses chronic seizure frequency for nearly 1 year. These findings establish a key role of neurogenesis in chronic seizure development and associated memory impairment and suggest that targeting aberrant hippocampal neurogenesis may reduce recurrent seizures and restore cognitive function following a pro-epileptic brain insult.


Asunto(s)
Trastornos del Conocimiento/fisiopatología , Epilepsia del Lóbulo Temporal/fisiopatología , Hipocampo/crecimiento & desarrollo , Neurogénesis/genética , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Trastornos del Conocimiento/inducido químicamente , Trastornos del Conocimiento/etiología , Modelos Animales de Enfermedad , Proteínas de Dominio Doblecortina , Epilepsia/inducido químicamente , Epilepsia/complicaciones , Epilepsia/fisiopatología , Epilepsia del Lóbulo Temporal/inducido químicamente , Epilepsia del Lóbulo Temporal/complicaciones , Hipocampo/metabolismo , Hipocampo/fisiopatología , Inmunohistoquímica , Ratones , Ratones Transgénicos , Proteínas Asociadas a Microtúbulos/metabolismo , Agonistas Muscarínicos/toxicidad , Proteínas del Tejido Nervioso/metabolismo , Células-Madre Neurales , Neurogénesis/fisiología , Neuronas/metabolismo , Neuropéptidos/metabolismo , Pilocarpina/toxicidad
14.
Nat Neurosci ; 12(9): 1090-2, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19701197

RESUMEN

The transcriptional program that controls adult neurogenesis is unknown. We generated mice with an inducible stem cell-specific deletion of Neurod1, resulting in substantially fewer newborn neurons in the hippocampus and olfactory bulb. Thus, Neurod1 is cell-intrinsically required for the survival and maturation of adult-born neurons.


Asunto(s)
Células Madre Adultas/fisiología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Hipocampo/fisiología , Neurogénesis/fisiología , Neuronas/fisiología , Bulbo Olfatorio/fisiología , Animales , Astrocitos/fisiología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Diferenciación Celular/fisiología , Supervivencia Celular/fisiología , Células Cultivadas , Ratones , Ratones Noqueados , Ratones Transgénicos , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA