Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
J Biol Chem ; 298(4): 101653, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35101445

RESUMEN

PROteolysis TArgeting Chimeras (PROTACs) are hetero-bifunctional small molecules that can simultaneously recruit target proteins and E3 ligases to form a ternary complex, promoting target protein ubiquitination and degradation via the Ubiquitin-Proteasome System (UPS). PROTACs have gained increasing attention in recent years due to certain advantages over traditional therapeutic modalities and enabling targeting of previously "undruggable" proteins. To better understand the mechanism of PROTAC-induced Target Protein Degradation (TPD), several computational approaches have recently been developed to study and predict ternary complex formation. However, mounting evidence suggests that ubiquitination can also be a rate-limiting step in PROTAC-induced TPD. Here, we propose a structure-based computational approach to predict target protein ubiquitination induced by cereblon (CRBN)-based PROTACs by leveraging available structural information of the CRL4A ligase complex (CRBN/DDB1/CUL4A/Rbx1/NEDD8/E2/Ub). We generated ternary complex ensembles with Rosetta, modeled multiple CRL4A ligase complex conformations, and predicted ubiquitination efficiency by separating the ternary ensemble into productive and unproductive complexes based on the proximity of the ubiquitin to accessible lysines on the target protein. We validated our CRL4A ligase complex models with published ternary complex structures and additionally employed our modeling workflow to predict ubiquitination efficiencies and sites of a series of cyclin-dependent kinases (CDKs) after treatment with TL12-186, a pan-kinase PROTAC. Our predictions are consistent with CDK ubiquitination and site-directed mutagenesis of specific CDK lysine residues as measured using a NanoBRET ubiquitination assay in HEK293 cells. This work structurally links PROTAC-induced ternary formation and ubiquitination, representing an important step toward prediction of target "degradability."


Asunto(s)
Modelos Moleculares , Ubiquitina-Proteína Ligasas , Ubiquitinación , Células HEK293 , Humanos , Estructura Terciaria de Proteína , Proteolisis , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/metabolismo
2.
Nat Chem Biol ; 17(11): 1157-1167, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34675414

RESUMEN

Bivalent proteolysis-targeting chimeras (PROTACs) drive protein degradation by simultaneously binding a target protein and an E3 ligase and forming a productive ternary complex. We hypothesized that increasing binding valency within a PROTAC could enhance degradation. Here, we designed trivalent PROTACs consisting of a bivalent bromo and extra terminal (BET) inhibitor and an E3 ligand tethered via a branched linker. We identified von Hippel-Lindau (VHL)-based SIM1 as a low picomolar BET degrader with preference for bromodomain containing 2 (BRD2). Compared to bivalent PROTACs, SIM1 showed more sustained and higher degradation efficacy, which led to more potent anticancer activity. Mechanistically, SIM1 simultaneously engages with high avidity both BET bromodomains in a cis intramolecular fashion and forms a 1:1:1 ternary complex with VHL, exhibiting positive cooperativity and high cellular stability with prolonged residence time. Collectively, our data along with favorable in vivo pharmacokinetics demonstrate that augmenting the binding valency of proximity-induced modalities can be an enabling strategy for advancing functional outcomes.


Asunto(s)
Ubiquitina-Proteína Ligasas/metabolismo , Humanos , Proteolisis
3.
J Immunol ; 207(4): 1211-1221, 2021 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-34312257

RESUMEN

Long half-life of therapeutic Abs and Fc fusion proteins is crucial to their efficacy and is, in part, regulated by their interaction with neonatal Fc receptor (FcRn). However, the current methods (e.g., surface plasmon resonance and biolayer interferometry) for measurement of interaction between IgG and FcRn (IgG/FcRn) require either FcRn or IgG to be immobilized on the surface, which is known to introduce experimental artifacts and have led to conflicting data. To study IgG/FcRn interactions in solution, without a need for surface immobilization, we developed a novel (to our knowledge), solution-based homogeneous binding immunoassay based on NanoBiT luminescent protein complementation technology. We optimized the assay (NanoBiT FcRn assay) for human FcRn, mouse FcRn, rat FcRn, and cynomolgus FcRn and used them to determine the binding affinities of a panel of eight Abs. Assays could successfully capture the modulation in IgG/FcRn binding based on changes in Fc fragment of the Abs. We also looked at the individual contribution of Fc and F(ab)2 on the IgG/FcRn interaction and found that Fc is the main driver for the interaction at pH 6. Our work highlights the importance of using orthogonal methods to validate affinity data generated using biosensor platforms. Moreover, the simple add-and-read format of the NanoBiT FcRn assay is amenable for high-throughput screening during early Ab discovery phase.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Antígenos de Histocompatibilidad Clase I/inmunología , Inmunoensayo/métodos , Mediciones Luminiscentes/métodos , Receptores Fc/inmunología , Secuencia de Aminoácidos , Animales , Técnicas Biosensibles/métodos , Humanos , Fragmentos Fc de Inmunoglobulinas/inmunología , Pruebas Inmunológicas/métodos , Ratones , Unión Proteica/inmunología , Ratas
4.
Chem Soc Rev ; 51(14): 6210-6221, 2022 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-35792307

RESUMEN

Targeted protein degradation has exploded over the past several years due to preclinical and early clinical therapeutic success of numerous compounds, and the emergence of new degradation modalities, which has broadened the definition of what a degrader is. The most characterized and well-studied small molecule degraders are molecular glues and proteolysis targeting chimeras (PROTACs). These degraders induce a ternary complex between a target protein, degrader, and E3 ligase component, resulting in ubiquitination and subsequent degradation of the target protein via the ubiquitin proteasomal system (UPS). This event-driven process requires success at all steps through a complex cascade of events. As more systems, degraders, and targets are tested, it has become increasingly clear that achieving degradation is only the first critical milestone in a degrader development program. Rather highly efficacious degraders require a combination of multiple optimized parameters: rapid degradation, high potency, high maximal degradation (Dmax), and sustained loss of target without re-dosing. Success to meet these more rigorous goals depends upon the ability to characterize and understand the dynamic cellular degradation profiles and relate them to the underlying mechanism for any given target treated with a specific concentration of degrader. From this starting point, optimization and fine tuning of multiple kinetic parameters such as how fast degradation occurs (the rate), how much of the target is degraded (the extent), and how long the target remains degraded (the duration) can be performed. In this review we explore the diversity of cellular kinetic degradation profiles which can arise after molecular glue and PROTAC treatment and the potential implications of these varying responses. As the overall degradation kinetics are a sum of individual mechanistic steps, each with their own kinetic contributions, we discuss the ways in which changes at any one of these steps could potentially influence the resultant kinetic degradation profiles. Looking forward, we address the importance in characterizing the kinetics of target protein loss in the early stages of degrader design and how this will enable more rapid discovery of therapeutic agents to elicit desired phenotypic outcomes.


Asunto(s)
Proteínas , Ubiquitina-Proteína Ligasas , Cinética , Proteínas/metabolismo , Proteolisis , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
5.
Anal Biochem ; 566: 151-159, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30503708

RESUMEN

Characterization of asparagine deamidation and aspartic acid isomerization is an important aspect of biotherapeutic protein analysis due to the potential negative effect of these modifications on drug efficacy and stability. Succinimide has long been known to be an intermediate product of asparagine deamidation and aspartic acid isomerization, but despite the key role of succinimide in these reactions, its analysis remains challenging due to its instability. We have developed a paradigm in which two interlinked analytical methods are used to develop an optimized approach to analyze succinimide. In the first method, low-pH protein digestion is used for detailed characterization of succinimide with peptide mapping. At low pH, succinimide is stable and can be analyzed with accurate mass measurements and tandem mass spectrometry to confirm its identity and localize its modification site. These results are then used to establish a hydrophobic interaction chromatography (HIC)-based method that can be used for release and stability studies. In this method, unmodified protein, deamidated products, and succinimide are well separated and quantified. Good correlation was obtained between the data from low-pH protein digestion-based peptide mapping and the HIC-based method. Method qualification showed that the HIC-based method is robust, accurate, and precise and has excellent linearity.


Asunto(s)
Anticuerpos Biespecíficos/análisis , Cromatografía Liquida/métodos , Mapeo Peptídico/métodos , Succinimidas/análisis , Concentración de Iones de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Succinimidas/química , Espectrometría de Masas en Tándem/métodos
6.
Drug Discov Today Technol ; 31: 61-68, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31200861

RESUMEN

A new series of therapeutic modalities resulting in degradation of target proteins, termed proteolysis targeting chimeras (PROTACs), hold significant therapeutic potential with possible prolonged pharmacodynamics, improved potency, and ability to target proteins previously thought of as "undruggable". PROTACs are heterobifunctional small molecules consisting of a target binding handle bridged via a chemical linker to an E3 ligase handle which recruit the E3 ligase and ubiquitin machinery to target proteins, resulting in subsequent ubiquitination and degradation of the target. With the generation of small molecule PROTAC compound libraries for drug discovery, it becomes essential to have sensitive screening technologies to rapidly profile activity and have assays which can clearly inform on performance at the various cellular steps required for PROTAC-mediated degradation. For PROTAC compounds, this has been particularly challenging using either biochemical or cellular assay approaches. Biochemical assays are highly informative for the first part of the degradation process, including optimization of compound binding to targets and interrogation of target:PROTAC:E3 ligase ternary complex formation, but struggle with the remaining steps; recruitment of ternary complex into larger active E3 ligase complexes, ubiquitination, and proteasomal degradation. On the other hand, cellular assays are excellent at determining if the PROTAC successfully degrades the target in its relevant setting but struggle as early development PROTAC compounds are often poorly cell-permeable given their high molecular weight. Additionally, if degradation is not observed in a cellular assay, it is difficult to deconvolute the reason why or at which step there was failure. In this review we will highlight the current approaches along with recent advances to overcome the challenges faced for cellular PROTAC screening, which will enable and advance drug discovery of therapeutic degradation compounds.


Asunto(s)
Proteolisis , Descubrimiento de Drogas , Proteínas/metabolismo
7.
EMBO J ; 32(5): 645-55, 2013 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-23353889

RESUMEN

TET proteins convert 5-methylcytosine to 5-hydroxymethylcytosine, an emerging dynamic epigenetic state of DNA that can influence transcription. Evidence has linked TET1 function to epigenetic repression complexes, yet mechanistic information, especially for the TET2 and TET3 proteins, remains limited. Here, we show a direct interaction of TET2 and TET3 with O-GlcNAc transferase (OGT). OGT does not appear to influence hmC activity, rather TET2 and TET3 promote OGT activity. TET2/3-OGT co-localize on chromatin at active promoters enriched for H3K4me3 and reduction of either TET2/3 or OGT activity results in a direct decrease in H3K4me3 and concomitant decreased transcription. Further, we show that Host Cell Factor 1 (HCF1), a component of the H3K4 methyltransferase SET1/COMPASS complex, is a specific GlcNAcylation target of TET2/3-OGT, and modification of HCF1 is important for the integrity of SET1/COMPASS. Additionally, we find both TET proteins and OGT activity promote binding of the SET1/COMPASS H3K4 methyltransferase, SETD1A, to chromatin. Finally, studies in Tet2 knockout mouse bone marrow tissue extend and support the data as decreases are observed of global GlcNAcylation and also of H3K4me3, notably at several key regulators of haematopoiesis. Together, our results unveil a step-wise model, involving TET-OGT interactions, promotion of GlcNAcylation, and influence on H3K4me3 via SET1/COMPASS, highlighting a novel means by which TETs may induce transcriptional activation.


Asunto(s)
Metilación de ADN , Proteínas de Unión al ADN/metabolismo , Dioxigenasas/metabolismo , Regulación de la Expresión Génica , N-Metiltransferasa de Histona-Lisina/metabolismo , N-Acetilglucosaminiltransferasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Transcripción Genética , 5-Metilcitosina/metabolismo , Secuencia de Aminoácidos , Animales , Western Blotting , Proliferación Celular , Células Cultivadas , Inmunoprecipitación de Cromatina , Islas de CpG , Citosina/análogos & derivados , Citosina/metabolismo , Epigénesis Genética , Glicosilación , Histonas/metabolismo , Factor C1 de la Célula Huésped/metabolismo , Humanos , Inmunoprecipitación , Ratones , Ratones Noqueados , Datos de Secuencia Molecular , Regiones Promotoras Genéticas/genética
8.
Anal Chem ; 89(9): 4838-4846, 2017 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-28365979

RESUMEN

In April 2016, the Food and Drug Administration approved the first biosimilar monoclonal antibody (mAb), Inflectra/Remsima (Celltrion), based off the original product Remicade (infliximab, Janssen). Biosimilars promise significant cost savings for patients, but the unavoidable differences between innovator and copycat biologics raise questions regarding product interchangeability. In this study, Remicade and Remsima were examined by native mass spectrometry, ion mobility, and quantitative peptide mapping. The levels of oxidation, deamidation, and mutation of individual amino acids were remarkably similar. We found different levels of C-terminal truncation, soluble protein aggregates, and glycation that all likely have a limited clinical impact. Importantly, we identified more than 25 glycoforms for each product and observed glycoform population differences, with afucosylated glycans accounting for 19.7% of Remicade and 13.2% of Remsima glycoforms, which translated into a 2-fold reduction in the level of FcγIIIa receptor binding for Remsima. While this difference was acknowledged in Remsima regulatory filings, our glycoform analysis and receptor binding results appear to be somewhat different from the published values, likely because of methodological differences between laboratories and improved glycoform identification by our laboratory using a peptide map-based method. Our mass spectrometry-based analysis provides rapid and robust analytical information vital for biosimilar development. We have demonstrated the utility of our multiple-attribute monitoring workflow using the model mAbs Remicade and Remsima and have provided a template for analysis of future mAb biosimilars.


Asunto(s)
Anticuerpos Monoclonales/química , Biosimilares Farmacéuticos/química , Infliximab/química , Cromatografía en Gel , Glicosilación , Interferometría , Espectrometría de Masas/métodos , Mapeo Peptídico
9.
Anal Chem ; 87(23): 11635-40, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26537636

RESUMEN

We present a novel proteomic standard for assessing liquid chromatography-tandem mass spectrometry (LC-MS/MS) instrument performance, in terms of chromatographic reproducibility and dynamic range within a single LC-MS/MS injection. The peptide mixture standard consists of six peptides that were specifically synthesized to cover a wide range of hydrophobicities (grand average hydropathy (GRAVY) scores of -0.6 to 1.9). A combination of stable isotope labeled amino acids ((13)C and (15)N) were inserted to create five isotopologues. By combining these isotopologues at different ratios, they span four orders of magnitude within each distinct peptide sequence. Each peptide, from lightest to heaviest, increases in abundance by a factor of 10. We evaluate several metrics on our quadrupole orbitrap instrument using the 6 × 5 LC-MS/MS reference mixture spiked into a complex lysate background as a function of dynamic range, including mass measurement accuracy (MMA) and the linear range of quantitation of MS1 and parallel reaction monitoring experiments. Detection and linearity of the instrument routinely spanned three orders of magnitude across the gradient (500 fmol to 0.5 fmol on column) and no systematic trend was observed for MMA of targeted peptides as a function of abundance by analysis of variance analysis (p = 0.17). Detection and linearity of the fifth isotopologue (i.e., 0.05 fmol on column) was dependent on the peptide and instrument scan type (MS1 vs PRM). We foresee that this standard will serve as a powerful method to conduct both intra-instrument performance monitoring/evaluation, technology development, and inter-instrument comparisons.


Asunto(s)
Cromatografía Liquida/métodos , Indicadores y Reactivos/química , Péptidos/química , Proteómica/métodos , Espectrometría de Masas en Tándem/métodos , Aminoácidos/química , Células HEK293 , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Péptidos/síntesis química
10.
J Pharm Biomed Anal ; 243: 116124, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38520959

RESUMEN

Peptide mapping is the key method for characterization of primary structure of biotherapeutic proteins. This method relies on digestion of proteins into peptides that are then analyzed for amino acid sequence and post-translational modifications. Owing to its high activity and cleavage specificity, trypsin is the protease of choice for peptide mapping. In this study, we investigated critical requirements of peptide mapping and how trypsin affects these requirements. We found that the commonly used MS-grade trypsins contained non-specific, chymotryptic-like cleavage activity causing generation of semi-tryptic peptides and degradation of tryptic-specific peptides. Furthermore, MS-grade trypsins contained pre-existing autoproteolytic peptides and, moreover, additional autoproteolytic peptides were resulting from prominent autoproteolysis during digestion. In our long-standing quest to improve trypsin performance, we developed novel recombinant trypsin and evaluated whether it could address major trypsin drawbacks in peptide mapping. The study showed that the novel trypsin was free of detectable non-specific cleavage activity, had negligible level of autoproteolysis and maintained high activity over the course of digestion reaction. Taking advantage of the novel trypsin advanced properties, especially high cleavage specificity, we established the application for use of large trypsin quantities to digest proteolytically resistant protein sites without negative side effects. We also tested trypsin/Lys-C mix comprising the novel trypsin and showed elimination of non-specific cleavages observed in the digests with the commonly used trypsins. In addition, the improved features of the novel trypsin allowed us to establish the method for accurate and efficient non-enzymatic PTM analysis in biotherapeutic proteins.


Asunto(s)
Fragmentos de Péptidos , Proteínas , Mapeo Peptídico/métodos , Tripsina/química , Fragmentos de Péptidos/química , Péptidos/análisis
11.
Nat Commun ; 15(1): 482, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38228616

RESUMEN

Molecular-glue degraders are small molecules that induce a specific interaction between an E3 ligase and a target protein, resulting in the target proteolysis. The discovery of molecular glue degraders currently relies mostly on screening approaches. Here, we describe screening of a library of cereblon (CRBN) ligands against a panel of patient-derived cancer cell lines, leading to the discovery of SJ7095, a potent degrader of CK1α, IKZF1 and IKZF3 proteins. Through a structure-informed exploration of structure activity relationship (SAR) around this small molecule we develop SJ3149, a selective and potent degrader of CK1α protein in vitro and in vivo. The structure of SJ3149 co-crystalized in complex with CK1α + CRBN + DDB1 provides a rationale for the improved degradation properties of this compound. In a panel of 115 cancer cell lines SJ3149 displays a broad antiproliferative activity profile, which shows statistically significant correlation with MDM2 inhibitor Nutlin-3a. These findings suggest potential utility of selective CK1α degraders for treatment of hematological cancers and solid tumors.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Antineoplásicos/farmacología , Antineoplásicos/química , Línea Celular , Neoplasias/tratamiento farmacológico , Proteolisis , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
12.
Anal Chem ; 85(2): 907-14, 2013 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-23256507

RESUMEN

Identification of proteins resolved by SDS-PAGE depends on robust in-gel protein digestion and efficient peptide extraction, requirements that are often difficult to achieve. A lengthy and laborious procedure is an additional challenge of protein identification in gel. We show here that with the use of the mass spectrometry compatible surfactant sodium 3-((1-(furan-2-yl)undecyloxy)carbonylamino)propane-1-sulfonate, the challenges of in-gel protein digestion are effectively addressed. Peptide quantitation based on stable isotope labeling showed that the surfactant induced 1.5-2 fold increase in peptide recovery. Consequently, protein sequence coverage was increased by 20-30%, on average, and the number of identified proteins saw a substantial boost. The surfactant also accelerated the digestion process. Maximal in-gel digestion was achieved in as little as one hour, depending on incubation temperature, and peptides were readily recovered from gel eliminating the need for postdigestion extraction. This study shows that the surfactant provides an efficient means of improving protein identification in gel and streamlining the in-gel digestion procedure requiring no extra handling steps or special equipment.


Asunto(s)
Proteínas/metabolismo , Tensoactivos/química , Geles/química , Geles/metabolismo , Estructura Molecular , Proteínas/química , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Tensoactivos/metabolismo
13.
Methods Enzymol ; 681: 81-113, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36764765

RESUMEN

The discovery of new PROTAC molecules is dependent on robust and high-throughput assays to measure PROTAC-protein interactions and ternary complex formation. Here we present the optimization and execution of Lumit Immunoassays to measure PROTAC binding and ternary complex formation in a biochemical format. We demonstrate how Lumit can be used to rank order affinities of small molecules and PROTACs to BRD4(BD1, BD2) and how to measure PROTAC-mediated ternary complex formation of BRD4(BD1, BD2) and E3 Ligase VHL. Results from both biochemical assays correlate with live and lytic cell assays, indicating that Lumit Immunoassays can be used as a high-throughput compatible screening methodology to test new small molecules.


Asunto(s)
Proteínas Nucleares , Factores de Transcripción , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo , Bibliotecas de Moléculas Pequeñas/química , Ubiquitina-Proteína Ligasas/metabolismo , Inmunoensayo , Proteolisis
14.
J Proteome Res ; 11(2): 564-75, 2012 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-22149079

RESUMEN

Efficient determination of protein interactions and cellular localization remains a challenge in higher order eukaryotes and creates a need for robust technologies for functional proteomics studies. To address this, the HaloTag technology was developed for highly efficient and rapid isolation of intracellular complexes and correlative in vivo cellular imaging. Here we demonstrate the strength of this technology by simultaneous capture of human eukaryotic RNA polymerases (RNAP) I, II, and III using a shared subunit, POLR2H, fused to the HaloTag. Affinity purifications showed successful isolation, as determined using quantitative proteomics, of all RNAP core subunits, even at expression levels near endogenous. Transient known RNAP II interacting partners were identified as well as three previously uncharacterized interactors. These interactions were validated and further functionally characterized using cellular imaging. The multiple capabilities of the HaloTag technology demonstrate the ability to efficiently isolate highly challenging multiprotein complexes, discover new interactions, and characterize cellular localization.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/química , Sondas Moleculares/química , Subunidades de Proteína/análisis , Proteómica/métodos , Línea Celular , Núcleo Celular , Biología Computacional , Citoplasma , ARN Polimerasas Dirigidas por ADN/metabolismo , Bases de Datos de Proteínas , Células HEK293 , Humanos , Espectrometría de Masas , Microscopía Fluorescente , Sondas Moleculares/metabolismo , Complejos Multiproteicos
15.
Methods Mol Biol ; 2313: 313-322, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34478148

RESUMEN

Any immune reaction to therapeutic antibodies will impact the drug efficacy and can have serious consequences for patient safety. Therefore, detection and reporting of anti-drug antibodies (ADA) during clinical trials is required by regulatory agencies during drug approval process. We have developed a bioluminescent bridging immunoassay for ADA detection, which uses an extremely bright NanoLuc enzyme as a reporter. The assay is sensitive with a wide dynamic range and meets the FDA drug tolerance guideline of detecting 100 ng/ml of ADA in the presence of 500-fold excess of free drug. We describe detailed protocols for development of ADA assays using therapeutic Trastuzumab as a model drug and an anti-Trastuzumab antibody as an example of immune response.


Asunto(s)
Inmunoensayo , Anticuerpos , Humanos , Luciferasas , Preparaciones Farmacéuticas
16.
Sci Rep ; 12(1): 12185, 2022 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-35842448

RESUMEN

Fc engineering efforts are increasingly being employed to modulate interaction of antibodies with variety of Fc receptors in an effort to improve the efficacy and safety of the therapeutic antibodies. Among the various Fc receptors, Fc gamma receptors (FcγRs) present on variety of immune cells are especially relevant since they can activate multiple effector functions including antibody dependent cellular cytotoxicity (ADCC) and antibody dependent cellular phagocytosis (ADCP). Depending on the desired mechanism of action (MOA) of the antibody, interactions between Fc domain of the antibody and FcγR (denoted as Fc/FcγR) may need to be enhanced or abolished. Therefore, during the antibody discovery process, biochemical methods are routinely used to measure the affinities of Fc/FcγR interactions. To enable such screening, we developed a plate based, simple to use, homogeneous immunoassays for six FcγRs by leveraging a luminescent protein complementation technology (NanoBiT). An added advantage of the NanoBiT immunoassays is their solution-based format, which minimizes well known surface related artifacts associated with traditional biosensor platforms (e.g., surface plasmon resonance and biolayer interferometry). With NanoBiT FcγRs assays, we demonstrate that assays are specific, report IgG subclass specific affinities and detect modulation in Fc/FcγR interactions in response to the changes in the Fc domain. We subsequently screen a panel of therapeutic antibodies including seven monoclonal antibodies (mAbs) and four polyclonal intravenous immunoglobulin (IVIg) products and highlight the advantages of parallel screening method for developing new antibody therapies.


Asunto(s)
Fragmentos Fc de Inmunoglobulinas , Receptores de IgG , Citotoxicidad Celular Dependiente de Anticuerpos , Inmunoensayo , Fragmentos Fc de Inmunoglobulinas/química , Inmunoglobulina G , Receptores Fc
17.
Protein Expr Purif ; 76(2): 154-64, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21129486

RESUMEN

Although cultured mammalian cells are preferred for producing functional mammalian proteins with appropriate post-translational modifications, purification of recombinant proteins is frequently hampered by low expression. We have addressed this by creating a new method configured specifically for mammalian cell culture that provides rapid detection and efficient purification. This approach is based on HaloTag, a protein fusion tag designed to bind rapidly, selectively and covalently to a series of synthetic ligands that can carry a variety of functional groups, including fluorescent dyes for detection or solid supports for purification. Since the binding of HaloTag to the HaloLink resin is essentially irreversible, it overcomes the equilibrium-based binding limitations associated with affinity tags and enables efficient capture and purification of target protein, even at low expression levels. The target protein is released from the HaloLink resin by specific cleavage using a TEV protease fused to HaloTag (HaloTEV), leaving both HaloTag and HaloTEV permanently attached to the resin and highly pure, tag-free protein in solution. HaloTag fluorescent ligands enable fluorescent labeling of HaloTag fusion proteins, providing a convenient way to monitor expression, and thus facilitate the identification of optimal transient transfection conditions as well as the selection of high expression stable cell lines. The capabilities of this method have been demonstrated by the efficient purification of five functional human kinases from HEK293T cells. In addition, when purifications using FLAG, 3xFLAG, His(6)Tag and HaloTag were performed in parallel, HaloTag was shown to provide significantly higher yields, purity and overall recovery of the expressed proteins.


Asunto(s)
Cromatografía de Afinidad/métodos , Clonación Molecular/métodos , Proteínas Quinasas/aislamiento & purificación , Proteínas Recombinantes de Fusión/aislamiento & purificación , Western Blotting , Técnicas de Cultivo de Célula , Electroforesis en Gel de Poliacrilamida , Células HEK293 , Humanos , Proteínas Inmovilizadas/metabolismo , Proteínas Quinasas/análisis , Proteínas Quinasas/metabolismo , Proteínas Recombinantes de Fusión/análisis , Proteínas Recombinantes de Fusión/metabolismo , Factores de Tiempo
18.
Methods Mol Biol ; 2365: 151-171, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34432243

RESUMEN

Heterobifunctional small-molecule degraders known as Proteolysis Targeting Chimeras (PROTACs) serve as a chemical bridge bringing into direct association a target protein with an active E3 ligase complex, called the ternary complex, to facilitate targeted protein degradation. This ternary complex formation is the first key mechanistic step in a cascade of events that results in ubiquitination and subsequent degradation of the target protein via the ubiquitin-proteasome pathway. The ternary complex, however, is a nonnative cellular complex; therefore, PROTAC compound design has many challenges to overcome to ensure successful formation, including achieving structural and electrostatic favorability among target and ligase. Due to these challenges, finding successful PROTACs typically requires testing of extensive libraries of heterobifunctional compounds with varying linkers and E3 handles. As PROTAC ternary complex formation is also critically dependent on cellular context, live cell assays and technologies for rapid and robust screening are highly enabling for triaging of early stage compounds. Here, we present cellular assays utilizing NanoBRET technology for the study of ternary complexes, showing examples with two most popular PROTAC E3 ligase components, VHL (von Hippel-Lindau disease tumor suppressor) and CRBN (Cereblon). These assays can be run in either endpoint or real-time kinetic formats, are compatible with high-throughput workflows, and provide insight into how altering the PROTAC chemical composition affects the formation and stability of the ternary complex in live cells.


Asunto(s)
Proteolisis , Ubiquitina-Proteína Ligasas , Supervivencia Celular , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Nanotecnología
19.
SLAS Discov ; 26(4): 560-569, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33190579

RESUMEN

Targeted protein degradation using heterobifunctional proteolysis-targeting chimera (PROTAC) compounds, which recruit E3 ligase machinery to a target protein, is increasingly becoming an attractive pharmacologic strategy. PROTAC compounds are often developed from existing inhibitors, and assessing selectivity is critical for understanding on-target and off-target degradation. We present here an in-depth kinetic degradation study of the pan-kinase PROTAC, TL12-186, applied to 16 members of the cyclin-dependent kinase (CDK) family. Each CDK family member was endogenously tagged with the 11-amino-acid HiBiT peptide, allowing for live cell luminescent monitoring of degradation. Using this approach, we found striking differences and patterns in kinetic degradation rates, potencies, and Dmax values across the CDK family members. Analysis of the responses revealed that most of the CDKs showed rapid and near complete degradation, yet all cell cycle-associated CDKs (1, 2, 4, and 6) showed multimodal and partial degradation. Further mechanistic investigation of the key cell cycle protein CDK2 was performed and revealed CDK2 PROTAC-dependent degradation in unsynchronized or G1-arrested cells but minimal loss in S or G2/M arrest. The ability of CDK2 to form the PROTAC-mediated ternary complex with CRBN in only G1-arrested cells matched these trends, despite binding of CDK2 to TL12-186 in all phases. These data indicate that target subpopulation degradation can occur, dictated by the formation of the ternary complex. These studies additionally underscore the importance of profiling degradation compounds in cellular systems where complete pathways are intact and target proteins can be characterized in their relevant complexes.


Asunto(s)
Bioensayo , Ciclo Celular/efectos de los fármacos , Quinasa 2 Dependiente de la Ciclina/metabolismo , Quinasa 4 Dependiente de la Ciclina/metabolismo , Oxindoles/farmacología , Piperidinas/farmacología , Procesamiento Proteico-Postraduccional , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Sistemas CRISPR-Cas , Ciclo Celular/genética , Quinasa 2 Dependiente de la Ciclina/genética , Quinasa 4 Dependiente de la Ciclina/genética , Células HEK293 , Humanos , Cinética , Complejo de la Endopetidasa Proteasomal/efectos de los fármacos , Unión Proteica , Proteolisis/efectos de los fármacos , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Coloración y Etiquetado , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación/efectos de los fármacos
20.
J Vis Exp ; (165)2020 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-33226022

RESUMEN

Targeted protein degradation compounds, including molecular glues or proteolysis targeting chimeras, are an exciting new therapeutic modality in small molecule drug discovery. This class of compounds induces protein degradation by bringing into proximity the target protein and the E3 ligase machinery proteins required to ubiquitinate and ultimately degrade the target protein through the ubiquitin-proteasomal pathway (UPP). Profiling of target protein degradation in a high-throughput fashion, however, remains highly challenging given the complexity of cellular pathways required to achieve degradation. Here we present a protocol and screening strategy based on the use of CRISPR/Cas9 endogenous tagging of target proteins with the 11 amino acid HiBiT tag which complements with high affinity to the LgBiT protein, to produce a luminescent protein. These CRISPR targeted cell lines with endogenous tags can be used to measure compound induced degradation in either real-time, kinetic live cell or endpoint lytic modes by monitoring luminescent signal using a luminescent plate-based reader. Here we outline the recommended screening protocols for the different formats, and also describe the calculation of key degradation parameters of rate, Dmax, DC50, Dmax50, as well as multiplexing with cell viability assays. These approaches enable rapid discovery and triaging of early stage compounds while maintaining endogenous expression and regulation of target proteins in relevant cellular backgrounds, allowing for efficient optimization of lead therapeutic compounds.


Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Ensayos Analíticos de Alto Rendimiento , Proteolisis , Adhesión Celular , Línea Celular , Supervivencia Celular , Fluorescencia , Células HEK293 , Humanos , Cinética , Ubiquitinación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA