Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Chemistry ; 27(32): 8233-8251, 2021 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-33871119

RESUMEN

The structure of Fischer carbene complexes (FCCs) is electron deficient. If bearing an α,ß-unsaturated system, it can generate a wide variety of compounds by undergoing many different transformations, including higher-order cycloadditions. The latter are described as pericyclic reactions in which more than six electrons participate. These reactions have been employed in various areas of organic synthesis, resulting in highly selective compounds with a broad range of scaffolds. The first studies on higher-order cycloadditions involving FCCs frequently yielded competing byproducts. Many groups have attempted to increase selectivity by exploring distinct reaction conditions, reagents and co-catalysts (e. g., metal-mediated cycloadditions). The present review is the first to focus exclusively on using higher-order cycloadditions involving FCCs to synthesize carbocycles and heterocycles. Based on two decades of reports, an analysis is made of the main aspects of the mechanisms proposed for higher-order cycloadditions and the structural diversity obtained by the substituent effect.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA