Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Int J Mol Sci ; 24(3)2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36768387

RESUMEN

Anastrepha spp. (Diptera: Tephritidae) infestations cause significant economic losses in commercial fruit production worldwide. However, some plants quickly counteract the insertion of eggs by females by generating neoplasia and hindering eclosion, as is the case for Persea americana Mill., cv. Hass (Hass avocados). We followed a combined transcriptomics/metabolomics approach to identify the molecular mechanisms triggered by Hass avocados to detect and react to the oviposition of the pestiferous Anastrepha ludens (Loew). We evaluated two conditions: fruit damaged using a sterile pin (pin) and fruit oviposited by A. ludens females (ovi). We evaluated both of the conditions in a time course experiment covering five sampling points: without treatment (day 0), 20 min after the treatment (day 1), and days 3, 6, and 9 after the treatment. We identified 288 differentially expressed genes related to the treatments. Oviposition (and possibly bacteria on the eggs' surface) induces a plant hypersensitive response (HR), triggering a chitin receptor, producing an oxidative burst, and synthesizing phytoalexins. We also observed a process of cell wall modification and polyphenols biosynthesis, which could lead to polymerization in the neoplastic tissue surrounding the eggs.


Asunto(s)
Magnoliopsida , Persea , Tephritidae , Animales , Femenino , Oviposición , Tephritidae/genética , Frutas
2.
BMC Genomics ; 21(1): 418, 2020 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-32571204

RESUMEN

BACKGROUND: In bacteria, pan-genomes are the result of an evolutionary "tug of war" between selection and horizontal gene transfer (HGT). High rates of HGT increase the genetic pool and the effective population size (Ne), resulting in open pan-genomes. In contrast, selective pressures can lead to local adaptation by purging the variation introduced by HGT and mutation, resulting in closed pan-genomes and clonal lineages. In this study, we explored both hypotheses, elucidating the pan-genome of Vibrionaceae isolates after a perturbation event in the endangered oasis of Cuatro Ciénegas Basin (CCB), Mexico, and looking for signals of adaptation to the environments in their genomes. RESULTS: We obtained 42 genomes of Vibrionaceae distributed in six lineages, two of them did not showed any close reference strain in databases. Five of the lineages showed closed pan-genomes and were associated to either water or sediment environment; their high Ne estimates suggest that these lineages are not from a recent origin. The only clade with an open pan-genome was found in both environments and was formed by ten genetic groups with low Ne, suggesting a recent origin. The recombination and mutation estimators (r/m) ranged from 0.005 to 2.725, which are similar to oceanic Vibrionaceae estimations. However, we identified 367 gene families with signals of positive selection, most of them found in the core genome; suggesting that despite recombination, natural selection moves the Vibrionaceae CCB lineages to local adaptation, purging the genomes and keeping closed pan-genome patterns. Moreover, we identify 598 SNPs associated with an unstructured environment; some of the genes associated with these SNPs were related to sodium transport. CONCLUSIONS: Different lines of evidence suggest that the sampled Vibrionaceae, are part of the rare biosphere usually living under famine conditions. Two of these lineages were reported for the first time. Most Vibrionaceae lineages of CCB are adapted to their micro-habitats rather than to the sampled environments. This pattern of adaptation is concordant with the association of closed pan-genomes and local adaptation.


Asunto(s)
Polimorfismo de Nucleótido Simple , Vibrionaceae/clasificación , Vibrionaceae/fisiología , Secuenciación Completa del Genoma/métodos , Adaptación Fisiológica , Transferencia de Gen Horizontal , Genética de Población , Genoma Bacteriano , Familia de Multigenes , Mutación , Filogenia , Densidad de Población , Selección Genética , Vibrionaceae/genética , Vibrionaceae/aislamiento & purificación
3.
Int J Mol Sci ; 21(21)2020 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-33138264

RESUMEN

Anastrepha ludens is a key pest of mangoes and citrus from Texas to Costa Rica but the mechanisms of odorant perception in this species are poorly understood. Detection of volatiles in insects occurs mainly in the antenna, where molecules penetrate sensillum pores and link to soluble proteins in the hemolymph until reaching specific odor receptors that trigger signal transduction and lead to behavioral responses. Scrutinizing the molecular foundation of odorant perception in A. ludens is necessary to improve biorational management strategies against this pest. After exposing adults of three maturity stages to a proteinaceous attractant, we studied antennal morphology and comparative proteomic profiles using nano-LC-MS/MS with tandem mass tags combined with synchronous precursor selection (SPS)-MS3. Antennas from newly emerged flies exhibited dense agglomerations of olfactory sensory neurons. We discovered 4618 unique proteins in the antennas of A. ludens and identified some associated with odor signaling, including odorant-binding and calcium signaling related proteins, the odorant receptor co-receptor (Orco), and putative odorant-degrading enzymes. Antennas of sexually immature flies exhibited the most upregulation of odor perception proteins compared to mature flies exposed to the attractant. This is the first report where critical molecular players are linked to the odor perception mechanism of A. ludens.


Asunto(s)
Frutas/química , Feromonas/farmacología , Proteoma/análisis , Proteoma/metabolismo , Tephritidae/metabolismo , Animales , Tephritidae/efectos de los fármacos
4.
Environ Microbiol ; 16(5): 1366-77, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24128119

RESUMEN

Antagonistic interactions are frequently observed among bacteria in the environment and result in complex networks, which could promote co-existence, and therefore promote biodiversity. We analysed interactions of aquatic bacteria isolated by their ability to grow in Pseudomonas isolation agar from Churince, Cuatro Ciénegas, Mexico. In the resulting network, highly antagonistic and highly sensitive strains could be distinguished, forming a largely hierarchical structure. Most of the highly antagonistic strains belonged to the genus Pseudomonas. The network was sender-determined, which means that the antagonist strains had a larger influence on its structure than the sensitive ones. Very few interactions were necessary to connect all strains, implying that the network was 'small world'. The network was highly nested, having a core of highly interacting strains, with which the less antagonistic or highly sensitive interact. A probabilistic model was built, which captured most features of the network. Biological interpretation of the model implied a state in which many different antagonistic mechanisms were present, and most strains were resistant to them. Our work shows that strains of Pseudomonas from the water column at Cuatro Ciénegas have the potential to interact antagonistically with many closely related strains and that these interactions are usually not reciprocal.


Asunto(s)
Antibiosis , Modelos Biológicos , Pseudomonas/fisiología , Biodiversidad , México , Modelos Estadísticos , Pseudomonas/clasificación , Pseudomonas/aislamiento & purificación , Microbiología del Agua
5.
ISME Commun ; 3(1): 64, 2023 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-37355707

RESUMEN

Marine sediments comprise one of the largest environments on the planet, and their microbial inhabitants are significant players in global carbon and nutrient cycles. Recent studies using metagenomic techniques have shown the complexity of these communities and identified novel microorganisms from the ocean floor. Here, we obtained 77 metagenome-assembled genomes (MAGs) from the bacterial phylum Armatimonadota in the Guaymas Basin, Gulf of California, and the Bohai Sea, China. These MAGs comprise two previously undescribed classes within Armatimonadota, which we propose naming Hebobacteria and Zipacnadia. They are globally distributed in hypoxic and anoxic environments and are dominant members of deep-sea sediments (up to 1.95% of metagenomic raw reads). The classes described here also have unique metabolic capabilities, possessing pathways to reduce carbon dioxide to acetate via the Wood-Ljungdahl pathway (WLP) and generating energy through the oxidative branch of glycolysis using carbon dioxide as an electron sink, maintaining the redox balance using the WLP. Hebobacteria may also be autotrophic, not previously identified in Armatimonadota. Furthermore, these Armatimonadota may play a role in sulfur and nitrogen cycling, using the intermediate compounds hydroxylamine and sulfite. Description of these MAGs enhances our understanding of diversity and metabolic potential within anoxic habitats worldwide.

6.
mSystems ; 8(5): e0061923, 2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37702502

RESUMEN

IMPORTANCE: Petroleum pollution in the ocean has increased because of rapid population growth and modernization, requiring urgent remediation. Our understanding of the metabolic response of native microbial communities to oil spills is not well understood. Here, we explored the baseline hydrocarbon-degrading communities of a subarctic Atlantic region to uncover the metabolic potential of the bacteria that inhabit the surface and subsurface water. We conducted enrichments with a 13C-labeled hydrocarbon to capture the fraction of the community actively using the hydrocarbon. We then combined this approach with metagenomics to identify the metabolic potential of this hydrocarbon-degrading community. This revealed previously undescribed uncultured bacteria with unique metabolic mechanisms involved in aerobic hydrocarbon degradation, indicating that temperature may be pivotal in structuring hydrocarbon-degrading baseline communities. Our findings highlight gaps in our understanding of the metabolic complexity of hydrocarbon degradation by native marine microbial communities.


Asunto(s)
Bacterias , Hidrocarburos , Biodegradación Ambiental , Hidrocarburos/análisis , Bacterias/genética , Océano Atlántico , Alcanos/metabolismo
7.
Front Microbiol ; 13: 825167, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35572686

RESUMEN

Pozas Rojas is a hydrological system comprising nine isolated shallow ponds and a deep lagoon, which were temporally merged in 2010 by increased rainfall due to a tropical cyclone. In this work, we assess which components, biotic interactions, or environment filtering effects, drive the assembly of microbial communities after a natural perturbation. Arsenic, pH, and temperature are among the most significant environmental variables between each pond, clustering the samples in two main groups, whereas microbial composition is diverse and unique to each site, with no core at the operational taxonomic unit level and only 150 core genera when studied at the genus level. Los Hundidos lagoon has the most differentiated community, which is highly similar to the epipelagic Mediterranean Sea communities. On the other hand, the shallow ponds at the Pozas Rojas system resemble more to epicontinental hydrological systems, such as some cold rivers of the world and the phreatic mantle from Iowa. Overall, despite being a sole of water body 2 years prior to the sampling, interspecific interactions, rather than environmental selection, seem to play a more important role in Pozas Rojas, bolstered by founder effects on each poza and subsequent isolation of each water body.

8.
Food Chem ; 367: 130656, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34359004

RESUMEN

Psidium guajava (guava) exhibits a high content of biomolecules with nutraceutical properties. However, the biochemistry and molecular foundation of guava ripening is unknown. We performed comparative proteomics and metabolomics studies in different fruit tissues at two ripening stages to understand this process in white guava. Our results, suggest the positive contribution of ethylene and abscisic acid (ABA) signaling to the regulation of biochemical changes during guava ripening. We characterized the modulation of several metabolic pathways, including those of sugar and chlorophyll metabolism, abiotic and biotic stress responses, and biosynthesis of carotenoids and secondary metabolites, among others. In addition to ethylene and ABA, we also found a differential accumulation of other growth regulators such as brassinosteroids, cytokinin, methyl-jasmonate, gibberellins and proteins, and discuss their possible implications in the intricate biochemical network associated with guava ripening process. This integrative approach represents a global overview of the metabolic pathway dynamics during guava ripening.


Asunto(s)
Psidium , Frutas/genética , Giberelinas , Metabolómica , Proteómica
9.
Front Microbiol ; 12: 685937, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34413837

RESUMEN

We studied the microbiota of a highly polyphagous insect, Anastrepha ludens (Diptera: Tephritidae), developing in six of its hosts, including two ancestral (Casimiroa edulis and C. greggii), three exotic (Mangifera indica cv. Ataulfo, Prunus persica cv. Criollo, and Citrus x aurantium) and one occasional host (Capsicum pubescens cv. Manzano), that is only used when extreme drought conditions limit fruiting by the common hosts. One of the exotic hosts ("criollo" peach) is rife with polyphenols and the occasional host with capsaicinoids exerting high fitness costs on the larvae. We pursued the following questions: (1) How is the microbial composition of the larval food related to the composition of the larval and adult microbiota, and what does this tell us about transience and stability of this species' gut microbiota? (2) How does metamorphosis affect the adult microbiota? We surveyed the microbiota of the pulp of each host fruit, as well as the gut microbiota of larvae and adult flies and found that the gut of A. ludens larvae lacks a stable microbiota, since it was invariably associated with the composition of the pulp microbiota of the host plant species studied and was also different from the microbiota of adult flies indicating that metamorphosis filters out much of the microbiota present in larvae. The microbiota of adult males and females was similar between them, independent of host plant and was dominated by bacteria within the Enterobacteriaceae. We found that in the case of the "toxic" occasional host C. pubescens the microbiota is enriched in potentially deleterious genera that were much less abundant in the other hosts. In contrast, the pulp of the ancestral host C. edulis is enriched in several bacterial groups that can be beneficial for larval development. We also report for the first time the presence of bacteria within the Arcobacteraceae family in the gut microbiota of A. ludens stemming from C. edulis. Based on our findings, we conclude that changes in the food-associated microbiota dictate major changes in the larval microbiota, suggesting that most larval gut microbiota is originated from the food.

10.
PLoS One ; 16(1): e0246079, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33507916

RESUMEN

A key factor to take actions against phytosanitary problems is the accurate and rapid detection of the causal agent. Here, we develop a molecular diagnostics system based on comparative genomics to easily identify fusariosis and specific pathogenic species as the Fusarium kuroshium, the symbiont of the ambrosia beetle Euwallaceae kuroshio Gomez and Hulcr which is responsible for Fusarium dieback disease in San Diego CA, USA. We performed a pan-genome analysis using sixty-three ascomycetes fungi species including phytopathogens and fungi associated with the ambrosia beetles. Pan-genome analysis revealed that 2,631 orthologue genes are only shared by Fusarium spp., and on average 3,941 (SD ± 1,418.6) are species-specific genes. These genes were used for PCR primer design and tested on DNA isolated from i) different strains of ascomycete species, ii) artificially infected avocado stems and iii) plant tissue of field-collected samples presumably infected. Our results let us propose a useful set of primers to either identify any species from Fusarium genus or, in a specific manner, species such as F. kuroshium, F. oxysporum, and F. graminearum. The results suggest that the molecular strategy employed in this study can be expanded to design primers against different types of pathogens responsible for provoking critical plant diseases.


Asunto(s)
Ascomicetos , Escarabajos/microbiología , Fusarium , Genoma Fúngico , Persea/microbiología , Enfermedades de las Plantas/microbiología , Animales , Ascomicetos/clasificación , Ascomicetos/genética , Fusarium/clasificación , Fusarium/genética
11.
Life (Basel) ; 8(4)2018 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-30551580

RESUMEN

Ambrosia beetles, along with termites and leafcutter ants, are the only fungus-farming lineages within the tree of life. Bacteria harbored by ambrosia beetles may play an essential role in the nutritional symbiotic interactions with their associated fungi; however, little is known about the impact of rearing conditions on the microbiota of ambrosia beetles. We have used culture-independent methods to explore the effect of rearing conditions on the microbiome associated with Xyleborus affinis, Xyleborus bispinatus, and Xyleborus volvulus, evaluating different media in laboratory-controlled conditions and comparing wild and laboratory conditions. Our results revealed that rearing conditions affected the fungal and bacterial microbiome structure and had a strong influence on bacterial metabolic capacities. We propose that the rearing conditions influence the ambrosia-associated fungal and bacterial communities. Furthermore, bacterial microbiome flexibility may help beetles adapt to different substrates.

12.
Life (Basel) ; 9(1)2018 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-30583535

RESUMEN

Mutualistic symbiosis and eusociality have developed through gradual evolutionary processes at different times in specific lineages. Like some species of termites and ants, ambrosia beetles have independently evolved a mutualistic nutritional symbiosis with fungi, which has been associated with the evolution of complex social behaviors in some members of this group. We sequenced the transcriptomes of two ambrosia complexes (Euwallacea sp. near fornicatus⁻Fusarium euwallaceae and Xyleborus glabratus⁻Raffaelea lauricola) to find evolutionary signatures associated with mutualism and behavior evolution. We identified signatures of positive selection in genes related to nutrient homeostasis; regulation of gene expression; development and function of the nervous system, which may be involved in diet specialization; behavioral changes; and social evolution in this lineage. Finally, we found convergent changes in evolutionary rates of proteins across lineages with phylogenetically independent origins of sociality and mutualism, suggesting a constrained evolution of conserved genes in social species, and an evolutionary rate acceleration related to changes in selective pressures in mutualistic lineages.

13.
Pathog Dis ; 75(5)2017 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-28591848

RESUMEN

Bacteria have numerous strategies to interact with themselves and with their environment, but genes associated with these interactions are usually cataloged as pathogenic. To understand the role that these genes have not only in pathogenesis but also in bacterial interactions, we compared the genomes of eight bacteria from human-impacted environments with those of free-living bacteria from the Cuatro Ciénegas Basin (CCB), a relatively pristine oligotrophic site. Fifty-one genomes from CCB bacteria, including Pseudomonas, Vibrio, Photobacterium and Aeromonas, were analyzed. We found that the CCB strains had several virulence-related genes, 15 of which were common to all strains and were related to flagella and chemotaxis. We also identified the presence of Type III and VI secretion systems, which leads us to propose that these systems play an important role in interactions among bacterial communities beyond pathogenesis. None of the CCB strains had pathogenicity islands, despite having genes associated with antibiotics. Integrons were rare, while CRISPR elements were common. The idea that pathogenicity-related genes in many cases form part of a wider strategy used by bacteria to interact with other organisms could help us to understand the role of pathogenicity-related elements in an ecological and evolutionary framework leading toward a more inclusive One Health concept.


Asunto(s)
Gammaproteobacteria/genética , Gammaproteobacteria/patogenicidad , Genoma Bacteriano , Genómica/métodos , Interacciones Microbianas/genética , Filogenia , Sistemas de Secreción Bacterianos/genética , Bacteriófagos/genética , Evolución Biológica , Quimiotaxis/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Flagelos/genética , Gammaproteobacteria/clasificación , Secuencias Repetitivas Esparcidas , Salud Única , Virulencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA