Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
PLoS Pathog ; 11(3): e1004700, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25738876

RESUMEN

Two-component systems (TCS) represent major signal-transduction pathways for adaptation to environmental conditions, and regulate many aspects of bacterial physiology. In the whooping cough agent Bordetella pertussis, the TCS BvgAS controls the virulence regulon, and is therefore critical for pathogenicity. BvgS is a prototypical TCS sensor-kinase with tandem periplasmic Venus flytrap (VFT) domains. VFT are bi-lobed domains that typically close around specific ligands using clamshell motions. We report the X-ray structure of the periplasmic moiety of BvgS, an intricate homodimer with a novel architecture. By combining site-directed mutagenesis, functional analyses and molecular modeling, we show that the conformation of the periplasmic moiety determines the state of BvgS activity. The intertwined structure of the periplasmic portion and the different conformation and dynamics of its mobile, membrane-distal VFT1 domains, and closed, membrane-proximal VFT2 domains, exert a conformational strain onto the transmembrane helices, which sets the cytoplasmic moiety in a kinase-on state by default corresponding to the virulent phase of the bacterium. Signaling the presence of negative signals perceived by the periplasmic domains implies a shift of BvgS to a distinct state of conformation and activity, corresponding to the avirulent phase. The response to negative modulation depends on the integrity of the periplasmic dimer, indicating that the shift to the kinase-off state implies a concerted conformational transition. This work lays the bases to understand virulence regulation in Bordetella. As homologous sensor-kinases control virulence features of diverse bacterial pathogens, the BvgS structure and mechanism may pave the way for new modes of targeted therapeutic interventions.


Asunto(s)
Proteínas Bacterianas/metabolismo , Droseraceae/metabolismo , Periplasma/metabolismo , Factores de Transcripción/metabolismo , Proteínas Bacterianas/química , Bordetella pertussis/metabolismo , Cristalografía por Rayos X , Droseraceae/química , Modelos Moleculares , Mutagénesis Sitio-Dirigida/métodos , Transducción de Señal/fisiología , Factores de Transcripción/química , Virulencia
2.
Acta Crystallogr D Biol Crystallogr ; 68(Pt 4): 431-40, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22505263

RESUMEN

Biological macromolecules are polymers and therefore the restraints for macromolecular refinement can be subdivided into two sets: restraints that are applied to atoms that all belong to the same monomer and restraints that are associated with the covalent bonds between monomers. The CCP4 template-restraint library contains three types of data entries defining template restraints: descriptions of monomers and their modifications, both used for intramonomer restraints, and descriptions of links for intermonomer restraints. The library provides generic descriptions of modifications and links for protein, DNA and RNA chains, and for some post-translational modifications including glycosylation. Structure-specific template restraints can be defined in a user's additional restraint library. Here, JLigand, a new CCP4 graphical interface to LibCheck and REFMAC that has been developed to manage the user's library and generate new monomer entries is described, as well as new entries for links and associated modifications.


Asunto(s)
Bases de Datos de Proteínas , Diseño de Software , Algoritmos , Aminoácidos/química , Carbohidratos/química , Ligandos , Modelos Moleculares
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA