Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Biomed Res Int ; 2024: 7145339, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38410788

RESUMEN

Silver nanoparticles (AgNPs) are known as one of the highly utilized NPs owing to their unique characteristics in the field of cancer research. The goal of this research was to explore the oxidative stress, apoptosis, and angiogenesis in SKBR3 breast cancer cells after exposure to AgNPs. The survival rate of SKBR3 cancer cells and MCF-10A normal breast cells was assessed under the effects of different concentrations (0, 32, 64, 128, and 250 µg/ml) by MTT method. The oxidative condition was assessed by measuring reactive oxygen species (ROS) production, total oxidant status (TOS), total antioxidant capacity (TAC), malondialdehyde (MDA), and antioxidant enzyme activity (CAT, GPx, and CAT) using colorimetric-based kits. Flow cytometry and Hoechst 33258 staining were performed to investigate the induction of apoptosis. Furthermore, the expression of Bcl-2-associated X protein (Bax), B-cell lymphoma 2 (Bcl-2), and caspase 3 and 7 activity was measured. The cell migration and vascular endothelial growth factor-A (VEGF-A) gene expression, protein kinase B (AKT), phosphatidylinositol 3-kinase (PI3K) were also studied. The MTT results indicated that AgNPs inhibit the SKBR3 cells' viability in a concentration-dependent way. Besides, AgNPs markedly induced oxidative stress via increasing TOS content, MDA production, reduction of TAC, and regulation of antioxidant enzyme level. Additionally, AgNPs promoted apoptosis as revealed by an enhancement in Bax/Bcl-2 expression ratio. Findings also indicated that AgNPs suppress the expression of genes (VEGF-A, AKT, and PI3K) involved in angiogenesis. Altogether, our data revealed that AgNPs initiate oxidative stress and apoptosis in SKBR3 breast cancer cells, dose dependently.


Asunto(s)
Neoplasias de la Mama , Nanopartículas del Metal , Humanos , Femenino , Factor A de Crecimiento Endotelial Vascular/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Plata/farmacología , Antioxidantes/farmacología , Antioxidantes/metabolismo , Proteína X Asociada a bcl-2/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Fosfatidilinositol 3-Quinasas/metabolismo , Apoptosis , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo
2.
Chonnam Med J ; 59(3): 143-159, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37840684

RESUMEN

One of the most complicated eye disorders is age-related macular degeneration (AMD) which is the leading cause of irremediable blindness all over the world in the elderly. AMD is classified as early stage to late stage (advanced AMD), in which this stage is divided into the exudative or neovascular form (wet AMD) and the nonexudative or atrophic form (dry AMD). Clinically, AMD primarily influences the central area of retina known as the macula. Importantly, the wet form is generally associated with more severe vision loss. AMD has a systemic component, where many factors, like aging, genetic, environment, autoimmune and non-autoimmune disorders are associated with this disease. Additionally, healthy lifestyles, regular exercise, maintaining a normal lipid profile and weight are crucial to decreasing the risk of AMD. Furthermore, therapeutic strategies for limiting AMD should encompass a variety of factors to avoid and improve drug interventions, and also need to take into account personalized genetic information. In conclusion, with the development of technology and research progress, visual impairment and legal blindness from AMD have been substantially reduced in incidence. This review article is focused on identifying and developing the knowledge about the association between genetics, and etiology with AMD. We hope that this review will encourage researchers and lecturers, open new discussions, and contribute to a better understanding of AMD that improves patients' visual acuity, and upgrades the quality of life of AMD patients.

3.
Curr Med Chem ; 30(30): 3486-3503, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36305155

RESUMEN

BACKGROUND: Graphene oxide (GO)-based systems are among the drug delivery systems and have drawn a lot of interest in the field of medicine. METHODS: In this work, two novel phosphoramides with the formulas of (NHCHCH2C(CH3)2NHC(CH3)2CH2P(S)(OEt)2 (L1) and (NHCHCH2C(CH3)2 NHC (CH3)2CH2P (O) (NHC6H5) (OC5H6) (L2) were synthesized and characterized by spectroscopic methods. Then, graphene oxide (GO) was functionalized by L1 and L2. FT-IR, XRD, FE- SEM/ MAP, and Zeta potential analyses were applied to confirm the synthesis of phosphoramide-functionalized graphene oxides (GO-L1 and GO-L2). Cytotoxicity of synthesized compounds was evaluated against breast cancer cell line (SK-BR-3) using MTT assay. Moreover, the flow cytometry assay was performed to evaluate the cell death mechanisms. RESULTS: The results showed that GO-L1 and GO-L2 had a more inhibitory effect against cancer cells than that of L1 and L2, and GO-L2 showed the highest cytotoxicity with an IC50 value of 38.13 µg/ml. Quantum calculations were employed to optimize structures. HOMO and LUMO energy values and physical adsorption of synthesized compounds were obtained by the DMol3 module in the Material Studio 2017. The docking studies were used to investigate the binding of L1, L2, GO-L1, and GO-L2 to DNA polymerase IIα. CONCLUSION: Anticancer activity of phosphoramide compounds was increased after attachment on the GO surface, and the docking studies' results were in good accordance with the experimental cytotoxicity results.


Asunto(s)
Grafito , Humanos , Grafito/química , Fosforamidas , Óxidos/farmacología , Óxidos/química , Espectroscopía Infrarroja por Transformada de Fourier
4.
Chonnam Med J ; 58(3): 102-109, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36245767

RESUMEN

Bladder cancer is defined as a urinary tract malignancy that threatens men's and women's health. Due to the side effects of common chemotherapies, novel therapeutic strategies are necessary to overcome the issues concerning bladder cancer treatments. Nanotechnology has been suggested as a means to develop the next-generation objectives of cancer diagnosis and treatment among various novel therapies. Owing to the special characteristics that they can offer, silver nanoparticles (AgNPs) were investigated in this study to evaluate their apoptotic impact on bladder cancer 5637 cells. In this study, an MTT assay was conducted and appropriate concentrations of AgNPs were selected. Moreover, reactive oxygen species (ROS) production and apoptosis levels were determined using fluorimetric and Annexin/PI flow cytometry assays, respectively. Moreover, the activity of caspase 3,7, mRNA expression of Bax (Bcl-2-associated X) and Bcl-2 (B-cell lymphoma 2) were assessed based on colorimetric and qRT-PCR methods, respectively. The results indicated that AgNPs can significantly reduce the viability of 5637 cells in a dose-dependent mode as well as having the ability to elevate ROS production. Flow cytometry data showed that AgNPs lead to a remarkable increase in the apoptosis rate as compared with the control. Consistent with this, the induction of apoptosis was revealed by the overexpression of Bax, accompanied by a reduction in Bcl-2 expression compared to the control. Furthermore, AgNPs remarkably stimulated caspase 3,7 activation. In summary, AgNPs can mediate apoptosis in 5637 cells via excessive ROS formation, up-regulating Bax/Bcl-2 expression, and caspase 3,7 activation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA