Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
J Biol Chem ; 294(45): 16966-16977, 2019 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-31582562

RESUMEN

DNMT3A (DNA methyltransferase 3A) is a de novo DNA methyltransferase responsible for establishing CpG methylation patterns within the genome. DNMT3A activity is essential for normal development, and its dysfunction has been linked to developmental disorders and cancer. DNMT3A is frequently mutated in myeloid malignancies with the majority of mutations occurring at Arg-882, where R882H mutations are most frequent. The R882H mutation causes a reduction in DNA methyltransferase activity and hypomethylation at differentially-methylated regions within the genome, ultimately preventing hematopoietic stem cell differentiation and leading to leukemogenesis. Although the means by which the R882H DNMT3A mutation reduces enzymatic activity has been the subject of several studies, the precise mechanism by which this occurs has been elusive. Herein, we demonstrate that in the context of the full-length DNMT3A protein, the R882H mutation stabilizes the formation of large oligomeric DNMT3A species to reduce the overall DNA methyltransferase activity of the mutant protein as well as the WT-R882H complex in a dominant-negative manner. This shift in the DNMT3A oligomeric equilibrium and the resulting reduced enzymatic activity can be partially rescued in the presence of oligomer-disrupting DNMT3L, as well as DNMT3A point mutations along the oligomer-forming interface of the catalytic domain. In addition to modulating the oligomeric state of DNMT3A, the R882H mutation also leads to a DNA-binding defect, which may further reduce enzymatic activity. These findings provide a mechanistic explanation for the observed loss of DNMT3A activity associated with the R882H hot spot mutation in cancer.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas/química , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Mutación , Multimerización de Proteína , ADN/metabolismo , ADN (Citosina-5-)-Metiltransferasas/genética , ADN Metiltransferasa 3A , Humanos , Modelos Moleculares , Estructura Cuaternaria de Proteína
2.
bioRxiv ; 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38659798

RESUMEN

Splice site recognition is essential for defining the transcriptome. Drugs like risdiplam and branaplam change how U1 snRNP recognizes particular 5' splice sites (5'SS) and promote U1 snRNP binding and splicing at these locations. Despite the therapeutic potential of 5'SS modulators, the complexity of their interactions and snRNP substrates have precluded defining a mechanism for 5'SS modulation. We have determined a sequential binding mechanism for modulation of -1A bulged 5'SS by branaplam using a combination of ensemble kinetic measurements and colocalization single molecule spectroscopy (CoSMoS). Our mechanism establishes that U1-C protein binds reversibly to U1 snRNP, and branaplam binds to the U1 snRNP/U1-C complex only after it has engaged a -1A bulged 5'SS. Obligate orders of binding and unbinding explain how reversible branaplam interactions cause formation of long-lived U1 snRNP/5'SS complexes. Branaplam is a ribonucleoprotein, not RNA duplex alone, targeting drug whose action depends on fundamental properties of 5'SS recognition.

3.
Nat Commun ; 15(1): 8776, 2024 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-39389991

RESUMEN

Splice site recognition is essential for defining the transcriptome. Drugs like risdiplam and branaplam change how human U1 snRNP recognizes particular 5' splice sites (5'SS) and promote U1 snRNP binding and splicing at these locations. Despite the therapeutic potential of 5'SS modulators, the complexity of their interactions and snRNP substrates have precluded defining a mechanism for 5'SS modulation. We have determined a sequential binding mechanism for modulation of -1A bulged 5'SS by branaplam using a combination of ensemble kinetic measurements and colocalization single molecule spectroscopy (CoSMoS). Our mechanism establishes that U1-C protein binds reversibly to U1 snRNP, and branaplam binds to the U1 snRNP/U1-C complex only after it has engaged with a -1A bulged 5'SS. Obligate orders of binding and unbinding explain how reversible branaplam interactions cause formation of long-lived U1 snRNP/5'SS complexes. Branaplam targets a ribonucleoprotein, not only an RNA duplex, and its action depends on fundamental properties of 5'SS recognition.


Asunto(s)
Unión Proteica , Sitios de Empalme de ARN , Empalme del ARN , Ribonucleoproteína Nuclear Pequeña U1 , Humanos , Ribonucleoproteína Nuclear Pequeña U1/metabolismo , Cinética , Sitios de Unión
4.
Antimicrob Agents Chemother ; 57(7): 3358-68, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23650168

RESUMEN

Human rhinovirus (HRV) is the predominant cause of the common cold, but more importantly, infection may have serious repercussions in asthmatics and chronic obstructive pulmonary disorder (COPD) patients. A cell-based antiviral screen against HRV was performed with a subset of our proprietary compound collection, and an aminothiazole series with pan-HRV species and enteroviral activity was identified. The series was found to act at the level of replication in the HRV infectious cycle. In vitro selection and sequencing of aminothiazole series-resistant HRV variants revealed a single-nucleotide mutation leading to the amino acid change I42V in the essential HRV 3A protein. This same mutation has been previously implicated in resistance to enviroxime, a former clinical-stage antipicornavirus agent. Enviroxime-like compounds have recently been shown to target the lipid kinase phosphatidylinositol 4-kinase III beta (PI4KIIIß). A good correlation between PI4KIIIß activity and HRV antiviral potency was found when analyzing the data over 80 compounds of the aminothiazole series, covering a 750-fold potency range. The mechanism of action through PI4KIIIß inhibition was further demonstrated by small interfering RNA (siRNA) knockdown of PI4KB, which reduced HRV replication and also increased the potency of the PI4KIIIß inhibitors. Inhibitors from two different structural classes with promising pharmacokinetic profiles and with very good selectivity for PI4KIIIß were used to dissociate compound-related toxicity from target-related toxicity. Mortality was seen in all dosing groups of mice treated with either compound, therefore suggesting that short-term inhibition of PI4KIIIß is deleterious.


Asunto(s)
1-Fosfatidilinositol 4-Quinasa/antagonistas & inhibidores , Cefalosporinas/farmacología , Rhinovirus/efectos de los fármacos , Rhinovirus/enzimología , Tiazoles/farmacología , 1-Fosfatidilinositol 4-Quinasa/genética , 1-Fosfatidilinositol 4-Quinasa/metabolismo , Animales , Antivirales/farmacología , Bencimidazoles/farmacología , Línea Celular Tumoral , Resfriado Común/tratamiento farmacológico , Resfriado Común/virología , Femenino , Células HeLa , Humanos , Ratones , Oximas , Polimorfismo de Nucleótido Simple , Interferencia de ARN , ARN Interferente Pequeño , Rhinovirus/crecimiento & desarrollo , Sulfonamidas , Replicación Viral/efectos de los fármacos , Replicación Viral/genética
5.
J Virol ; 86(21): 11595-607, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22896614

RESUMEN

Phosphatidylinositol-4-kinase IIIα (PI4KIIIα) is an essential host cell factor for hepatitis C virus (HCV) replication. An N-terminally truncated 130-kDa form was used to reconstitute an in vitro biochemical lipid kinase assay that was optimized for small-molecule compound screening and identified potent and specific inhibitors. Cell culture studies with PI4KIIIα inhibitors demonstrated that the kinase activity was essential for HCV RNA replication. Two PI4KIIIα inhibitors were used to select cell lines harboring HCV replicon mutants with a 20-fold loss in sensitivity to the compounds. Reverse genetic mapping isolated an NS4B-NS5A segment that rescued HCV RNA replication in PIK4IIIα-deficient cells. HCV RNA replication occurs on specialized membranous webs, and this study with PIK4IIIα inhibitor-resistant mutants provides a genetic link between NS4B/NS5A functions and PI4-phosphate lipid metabolism. A comprehensive assessment of PI4KIIIα as a drug target included its evaluation for pharmacologic intervention in vivo through conditional transgenic murine lines that mimic target-specific inhibition in adult mice. Homozygotes that induce a knockout of the kinase domain or knock in a single amino acid substitution, kinase-defective PI4KIIIα, displayed a lethal phenotype with a fairly widespread mucosal epithelial degeneration of the gastrointestinal tract. This essential host physiologic role raises doubt about the pursuit of PI4KIIIα inhibitors for treatment of chronic HCV infection.


Asunto(s)
1-Fosfatidilinositol 4-Quinasa/metabolismo , Hepacivirus/fisiología , Interacciones Huésped-Patógeno , Replicación Viral , 1-Fosfatidilinositol 4-Quinasa/antagonistas & inhibidores , Animales , Antivirales/farmacología , Línea Celular , Análisis Mutacional de ADN , Farmacorresistencia Viral , Inhibidores Enzimáticos/farmacología , Femenino , Genes Esenciales , Hepatocitos/enzimología , Hepatocitos/virología , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas Mutantes/genética , Proteínas no Estructurales Virales/genética
6.
Nature ; 440(7082): 368-71, 2006 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-16541079

RESUMEN

Non-haem Fe(II)/alpha-ketoglutarate (alphaKG)-dependent enzymes harness the reducing power of alphaKG to catalyse oxidative reactions, usually the hydroxylation of unactivated carbons, and are involved in processes such as natural product biosynthesis, the mammalian hypoxic response, and DNA repair. These enzymes couple the decarboxylation of alphaKG with the formation of a high-energy ferryl-oxo intermediate that acts as a hydrogen-abstracting species. All previously structurally characterized mononuclear iron enzymes contain a 2-His, 1-carboxylate motif that coordinates the iron. The two histidines and one carboxylate, known as the 'facial triad', form one triangular side of an octahedral iron coordination geometry. A subclass of mononuclear iron enzymes has been shown to catalyse halogenation reactions, rather than the more typical hydroxylation reaction. SyrB2, a member of this subclass, is a non-haem Fe(II)/alphaKG-dependent halogenase that catalyses the chlorination of threonine in syringomycin E biosynthesis. Here we report the structure of SyrB2 with both a chloride ion and alphaKG coordinated to the iron ion at 1.6 A resolution. This structure reveals a previously unknown coordination of iron, in which the carboxylate ligand of the facial triad is replaced by a chloride ion.


Asunto(s)
Proteínas Bacterianas/biosíntesis , Hierro/metabolismo , Oxidorreductasas/química , Oxidorreductasas/metabolismo , Pseudomonas syringae/enzimología , Proteínas Bacterianas/química , Sitios de Unión , Cloruros/metabolismo , Cristalografía por Rayos X , Histidina/metabolismo , Ácidos Cetoglutáricos/metabolismo , Ligandos , Modelos Moleculares , Conformación Proteica , Pseudomonas syringae/clasificación , Pseudomonas syringae/metabolismo
7.
Trends Pharmacol Sci ; 43(5): 437-454, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35331569

RESUMEN

The production of a mature mRNA requires coordination of multiple processing steps, which ultimately control its content, localization, and stability. These steps include some of the largest macromolecular machines in the cell, which were, until recently, considered undruggable due to their biological complexity. Building from an expanded understanding of the underlying mechanisms that drive these processes, a new wave of therapeutics is seeking to target RNA processing. With a focus on impacting gene regulation at the RNA level, such modalities offer potential for sequence-specific resolution in drug design. Here, we review our current understanding of RNA-processing events and their role in gene regulation, with a focus on the therapeutic opportunities that have emerged within this landscape.


Asunto(s)
Oligonucleótidos Antisentido , Procesamiento Postranscripcional del ARN , Regulación de la Expresión Génica , Humanos , Oligonucleótidos Antisentido/uso terapéutico , ARN/genética , ARN Mensajero
8.
Mol Cancer Ther ; 21(6): 890-902, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35642432

RESUMEN

Nearly 30% of patients with relapsed breast cancer present activating mutations in estrogen receptor alpha (ERα) that confer partial resistance to existing endocrine-based therapies. We previously reported the development of H3B-5942, a covalent ERα antagonist that engages cysteine-530 (C530) to achieve potency against both wild-type (ERαWT) and mutant ERα (ERαMUT). Anticipating that the emergence of C530 mutations could promote resistance to H3B-5942, we applied structure-based drug design to improve the potency of the core scaffold to further enhance the antagonistic activity in addition to covalent engagement. This effort led to the development of the clinical candidate H3B-6545, a covalent antagonist that is potent against both  ERαWT/MUT, and maintains potency even in the context of ERα C530 mutations. H3B-6545 demonstrates significant activity and superiority over standard-of-care fulvestrant across a panel of ERαWT and ERαMUT palbociclib sensitive and resistant models. In summary, the compelling preclinical activity of H3B-6545 supports its further development for the potential treatment of endocrine therapy-resistant ERα+ breast cancer harboring wild-type or mutant ESR1, as demonstrated by the ongoing clinical trials (NCT03250676, NCT04568902, NCT04288089). SUMMARY: H3B-6545 is an ERα covalent antagonist that exhibits encouraging preclinical activity against CDK4/6i naïve and resistant ERαWT and ERαMUT tumors.


Asunto(s)
Neoplasias de la Mama , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Ensayos Clínicos como Asunto , Receptor alfa de Estrógeno/genética , Femenino , Fulvestrant/uso terapéutico , Humanos , Indazoles , Recurrencia Local de Neoplasia , Piridinas
9.
Nature ; 436(7054): 1191-4, 2005 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-16121186

RESUMEN

Enzymatic incorporation of chlorine, bromine or iodine atoms occurs during the biosynthesis of more than 4,000 natural products. Halogenation can have significant consequences for the bioactivity of these products so there is great interest in understanding the biological catalysts that perform these reactions. Enzymes that halogenate unactivated aliphatic groups have not previously been characterized. Here we report the activity of five proteins-CmaA, CmaB, CmaC, CmaD and CmaE-in the construction of coronamic acid (CMA; 1-amino-1-carboxy-2-ethylcyclopropane), a constituent of the phytotoxin coronatine synthesized by the phytopathogenic bacterium Pseudomonas syringae. CMA derives from l-allo-isoleucine, which is covalently attached to CmaD through the actions of CmaA, a non-ribosomal peptide synthetase module, and CmaE, an unusual acyltransferase. We show that CmaB, a member of the non-haem Fe(2+), alpha-ketoglutarate-dependent enzyme superfamily, is the first of its class to show halogenase activity, chlorinating the gamma-position of l-allo-isoleucine. Another previously undescribed enzyme, CmaC, catalyses the formation of the cyclopropyl ring from the gamma-Cl-l-allo-isoleucine product of the CmaB reaction. Together, CmaB and CmaC execute gamma-halogenation followed by intramolecular gamma-elimination, in which biological chlorination is a cryptic strategy for cyclopropyl ring formation.


Asunto(s)
Aminoácidos/biosíntesis , Proteínas Bacterianas/metabolismo , Cloro/metabolismo , Enzimas/química , Enzimas/metabolismo , Hierro/metabolismo , Aciltransferasas/metabolismo , Aminoácidos/química , Aminoácidos/metabolismo , Proteínas Bacterianas/química , Catálisis , Hemo , Indenos/química , Indenos/metabolismo , Isoleucina/análogos & derivados , Isoleucina/metabolismo , Pseudomonas syringae/metabolismo , Valina/metabolismo
10.
ACS Med Chem Lett ; 11(6): 1305-1309, 2020 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-32551016

RESUMEN

Carbamoyl phosphate synthetase 1 (CPS1) is a potential synthetic lethal target in LKB1-deficient nonsmall cell lung cancer, where its overexpression supports the production of pyrimidine synthesis. In other cancer types, CPS1 overexpression and activity may prevent the accumulation of toxic levels of intratumoral ammonia to support tumor growth. Herein we report the discovery of a novel series of potent and selective small-molecule inhibitors of CPS1. Piperazine 2 was initially identified as a promising CPS1 inhibitor through a high-throughput screening effort. Subsequent structure-activity relationship optimization and structure-based drug design led to the discovery of piperazine H3B-616 (25), a potent allosteric inhibitor of CPS1 (IC50 = 66 nM).

11.
Cell Chem Biol ; 27(3): 259-268.e5, 2020 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-32017919

RESUMEN

Carbamoyl phosphate synthetase 1 (CPS1) catalyzes the first step in the ammonia-detoxifying urea cycle, converting ammonia to carbamoyl phosphate under physiologic conditions. In cancer, CPS1 overexpression supports pyrimidine synthesis to promote tumor growth in some cancer types, while in others CPS1 activity prevents the buildup of toxic levels of intratumoral ammonia to allow for sustained tumor growth. Targeted CPS1 inhibitors may, therefore, provide a therapeutic benefit for cancer patients with tumors overexpressing CPS1. Herein, we describe the discovery of small-molecule CPS1 inhibitors that bind to a previously unknown allosteric pocket to block ATP hydrolysis in the first step of carbamoyl phosphate synthesis. CPS1 inhibitors are active in cellular assays, blocking both urea synthesis and CPS1 support of the pyrimidine biosynthetic pathway, while having no activity against CPS2. These newly discovered CPS1 inhibitors are a first step toward providing researchers with valuable tools for probing CPS1 cancer biology.


Asunto(s)
Carbamoil-Fosfato Sintasa (Amoniaco)/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Piperidinas/farmacología , Bibliotecas de Moléculas Pequeñas/farmacología , Tiazoles/farmacología , Adenosina Trifosfato/antagonistas & inhibidores , Adenosina Trifosfato/metabolismo , Regulación Alostérica/efectos de los fármacos , Carbamoil-Fosfato Sintasa (Amoniaco)/genética , Carbamoil-Fosfato Sintasa (Amoniaco)/metabolismo , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/química , Humanos , Hidrólisis/efectos de los fármacos , Modelos Moleculares , Estructura Molecular , Piperidinas/química , Bibliotecas de Moléculas Pequeñas/química , Tiazoles/química
12.
Biochemistry ; 48(20): 4331-43, 2009 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-19245217

RESUMEN

Aliphatic halogenases activate O(2), cleave alpha-ketoglutarate (alphaKG) to CO(2) and succinate, and form haloferryl [X-Fe(IV)O; X = Cl or Br] complexes that cleave aliphatic C-H bonds to install halogens during the biosynthesis of natural products by non-ribosomal peptide synthetases (NRPSs). For the related alphaKG-dependent dioxygenases, it has been shown that reaction of the Fe(II) cofactor with O(2) to form the C-H bond-cleaving ferryl complex is "triggered" by binding of the target substrate. In this study, we have tested for and defined structural determinants of substrate triggering (ST) in the halogenase, SyrB2, from the syringomycin E biosynthetic NRPS of Pseudomonas syringae B301D. As for other halogenases, the substrate of SyrB2 is complex, consisting of l-Thr tethered via a thioester linkage to a covalently bound phosphopantetheine (PPant) cofactor of a carrier protein, SyrB1. Without an appended amino acid, SyrB1 does not trigger formation of the chloroferryl intermediate state in SyrB2, even in the presence of free l-Thr or its analogues, but SyrB1 charged either by l-Thr (l-Thr-S-SyrB1) or by any of several non-native amino acids does trigger the reaction by as much as 8000-fold (for the native substrate). Triggering efficacy is sensitive to the structures of both the amino acid and the carrier protein, being diminished by 5-24-fold when the native l-Thr is replaced with another amino acid and by approximately 40-fold when SyrB1 is replaced with the heterologous carrier protein, CytC2. The directing effect of the carrier protein and consequent tolerance for profound modifications to the target amino acid allow the chloroferryl state to be formed in the presence of substrates that perturb the ratio of its two putative coordination isomers, lack the target C-H bond (l-Ala-S-SyrB1), or contain a C-H bond of enhanced strength (l-cyclopropylglycyl-S-SyrB1). For the latter two cases, the SyrB2 chloroferryl state so formed exhibits unprecedented stability (t(1/2) = 30-110 min at 0 degree C), can be trapped at high concentration and purity by manual freezing without a cryosolvent, and represents an ideal target for structural characterization. As initial steps toward this goal, extended X-ray absorption fine structure (EXAFS) spectroscopy has been used to determine the Fe-O and Fe-Cl distances and density functional theory (DFT) calculations have been used to confirm that the measured distances are consistent with the anticipated structure of the intermediate.


Asunto(s)
Carbono/química , Hidrógeno/química , Oxidorreductasas/química , Catálisis , Cristalografía por Rayos X , Cinética , Estructura Molecular , Oxígeno/química , Oxigenasas/química , Pseudomonas syringae/metabolismo , Espectrofotometría/métodos , Especificidad por Sustrato , Temperatura , Factores de Tiempo
13.
Chem Biol ; 14(1): 31-40, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17254950

RESUMEN

Syringomycin, a lipopeptidolactone assembled from nine amino acid monomers by four enzymes, SyrB1, SyrB2, SyrC, and SyrE, is a cyclic nonribosomal peptide made by plant-associated Pseudomonas spp. This assembly is unusual because the terminal residue, 4-chlorothreonine, has been proposed to be added in trans since the ninth module of the megasynthetase SyrE lacks an adenylation domain required for Thr/Cl-Thr activation. SyrC is now identified as a Thr/Cl-Thr aminoacyltransferase, shuttling the Thr/Cl-Thr moiety between the pantetheinyl arms of the thiolation domain of SyrB1 and the thiolation domain in module nine of SyrE. SyrC uses Cys224 as a catalytic nucleophile to generate a Thr/Cl-Thr-S-enzyme intermediate during transfer. SyrC joins a growing family of such aminoacyl-shuttling enzymes that also use covalent catalysis to move aminoacyl groups from carrier proteins during coumermycin and coronamic acid biosynthesis.


Asunto(s)
Aminoaciltransferasas/metabolismo , Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/metabolismo , Péptido Sintasas/metabolismo , Treonina/metabolismo , Transporte Biológico , Pseudomonas syringae/enzimología , Treonina/análogos & derivados
14.
Cancer Discov ; 8(9): 1176-1193, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29991605

RESUMEN

Mutations in estrogen receptor alpha (ERα) that confer resistance to existing classes of endocrine therapies are detected in up to 30% of patients who have relapsed during endocrine treatments. Because a significant proportion of therapy-resistant breast cancer metastases continue to be dependent on ERα signaling, there remains a critical need to develop the next generation of ERα antagonists that can overcome aberrant ERα activity. Through our drug-discovery efforts, we identified H3B-5942, which covalently inactivates both wild-type and mutant ERα by targeting Cys530 and enforcing a unique antagonist conformation. H3B-5942 belongs to a class of ERα antagonists referred to as selective estrogen receptor covalent antagonists (SERCA). In vitro comparisons of H3B-5942 with standard-of-care (SoC) and experimental agents confirmed increased antagonist activity across a panel of ERαWT and ERαMUT cell lines. In vivo, H3B-5942 demonstrated significant single-agent antitumor activity in xenograft models representing ERαWT and ERαY537S breast cancer that was superior to fulvestrant. Lastly, H3B-5942 potency can be further improved in combination with CDK4/6 or mTOR inhibitors in both ERαWT and ERαMUT cell lines and/or tumor models. In summary, H3B-5942 belongs to a class of orally available ERα covalent antagonists with an improved profile over SoCs.Significance: Nearly 30% of endocrine therapy-resistant breast cancer metastases harbor constitutively activating mutations in ERα. SERCA H3B-5942 engages C530 of both ERαWT and ERαMUT, promotes a unique antagonist conformation, and demonstrates improved in vitro and in vivo activity over SoC agents. Importantly, single-agent efficacy can be further enhanced by combining with CDK4/6 or mTOR inhibitors. Cancer Discov; 8(9); 1176-93. ©2018 AACR.This article is highlighted in the In This Issue feature, p. 1047.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Resistencia a Antineoplásicos/efectos de los fármacos , Antagonistas del Receptor de Estrógeno/administración & dosificación , Receptor alfa de Estrógeno/antagonistas & inhibidores , Indazoles/administración & dosificación , Mutación , Administración Oral , Animales , Neoplasias de la Mama/genética , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Cisteína/antagonistas & inhibidores , Ensayos de Selección de Medicamentos Antitumorales , Sinergismo Farmacológico , Antagonistas del Receptor de Estrógeno/química , Antagonistas del Receptor de Estrógeno/farmacología , Receptor alfa de Estrógeno/química , Receptor alfa de Estrógeno/genética , Femenino , Humanos , Indazoles/química , Indazoles/farmacología , Células MCF-7 , Ratones , Conformación Proteica/efectos de los fármacos , Inhibidores de Proteínas Quinasas/administración & dosificación , Inhibidores de Proteínas Quinasas/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto
15.
Chem Biol ; 13(11): 1183-91, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17114000

RESUMEN

Four adjacent open reading frames, cytC1-C4, were cloned from a cytotrienin-producing strain of a Streptomyces sp. by using primers derived from the conserved region of a gene encoding a nonheme iron halogenase, CmaB, in coronamic acid biosynthesis. CytC1-3 were active after expression in Escherichia coli, and CytC4 was active after expression in Pseudomonas putida. CytC1, a relatively promiscuous adenylation enzyme, installs the aminoacyl moieties on the phosphopantetheinyl arm of the holo carrier protein CytC2. CytC3 is a nonheme iron halogenase that will generate both gamma-chloro- and gamma,gamma-dichloroaminobutyryl-S-CytC2 from aminobutyryl-S-CytC2. CytC4, a thioesterase, hydrolytically releases the dichloroaminobutyrate, a known streptomycete antibiotic. Thus, this short four-protein pathway is likely the biosynthetic source of this amino acid antimetabolite. This four-enzyme system analogously converts the proS-methyl group of valine to the dichloromethyl product regio- and stereospecifically.


Asunto(s)
Antimetabolitos/metabolismo , Proteínas Bacterianas/metabolismo , Butiratos/metabolismo , Streptomyces/metabolismo , Proteínas Bacterianas/genética , Clonación Molecular , Escherichia coli/metabolismo , Familia de Multigenes , Péptido Sintasas/metabolismo , Pseudomonas putida/metabolismo
16.
Chem Biol ; 12(11): 1189-200, 2005 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16298298

RESUMEN

The first 6 residues of the biosurfactant lipopeptidolactone arthrofactin have the D configuration, yet none of the 11 modules of the nonribosomal peptide synthetase assembly line have epimerization domains. We show that the two-module ArfA subunit and the first module of the ArfB subunit, which act in tandem to produce the N-acyl-D-Leu1-D-Asp2-D-Thr3-S-protein intermediate, activate the L amino acids and epimerize them as the aminoacyl-S-pantetheinyl T domain intermediates before the next downstream condensation. The condensation (C) domains are shown to have (D)C(L) chirality in peptide bond formation. The upstream aminoacyl/peptidyl moiety is epimerized before condensation only when the condensation domains are simultaneously presented with the L-aminoacyl-S-pantetheinyl acceptor. These (D)C(L) catalysts are dual function condensation/epimerization domains that can be predicted by bioinformatics analysis to be responsible for incorporation of all D residues in arthrofactin and of D residues in syringomycin, syringopeptin, and ramoplanin synthetases.


Asunto(s)
Aminoácidos/química , Aminoácidos/metabolismo , Péptidos Cíclicos/biosíntesis , Péptidos Cíclicos/química , Acetilación , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Clonación Molecular , Expresión Génica , Ligasas/química , Ligasas/genética , Ligasas/metabolismo , Lipopéptidos , Datos de Secuencia Molecular , Estructura Molecular , Péptidos Cíclicos/genética , Filogenia , Pseudomonas/genética , Racemasas y Epimerasas/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Estereoisomerismo
17.
Biochem J ; 386(Pt 2): 305-14, 2005 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-15479158

RESUMEN

HGO (homogentisate 1,2-dioxygenase; EC 1.13.11.5) catalyses the O2-dependent cleavage of HGA (homogentisate) to maleylacetoacetate in the catabolism of tyrosine. Anaerobic purification of heterologously expressed Fe(II)-containing human HGO yielded an enzyme preparation with a specific activity of 28.3+/- 0.6 micromol x min(-1) x mg(-1) (20 mM Mes, 80 mM NaCl, pH 6.2, 25 degrees C), which is almost twice that of the most active preparation described to date. Moreover, the addition of reducing agents or other additives did not increase the specific activity, in contrast with previous reports. The apparent specificity of HGO for HGA was highest at pH 6.2 and the steady-state cleavage of HGA fit a compulsory-order ternary-complex mechanism (K(m) value of 28.6+/-6.2 microM for HGA, K(m) value of 1240+/-160 microM for O2). Free HGO was subject to inactivation in the presence of O2 and during the steady-state cleavage of HGA. Both cases involved the oxidation of the active site Fe(II). 3-Cl HGA, a potential inhibitor of HGO, and its isosteric analogue, 3-Me HGO, were synthesized. At saturating substrate concentrations, HGO cleaved 3-Me and 3-Cl HGA 10 and 100 times slower than HGA respectively. The apparent specificity of HGO for HGA was approx. two orders of magnitude higher than for either 3-Me or 3-Cl HGA. Interestingly, 3-Cl HGA inactivated HGO only twice as rapidly as HGA. This contrasts with what has been observed in mechanistically related dioxygenases, which are rapidly inactivated by chlorinated substrate analogues, such as 3-hydroxyanthranilate dioxygenase by 4-Cl 3-hydroxyanthranilate.


Asunto(s)
Dioxigenasas/antagonistas & inhibidores , Dioxigenasas/metabolismo , Anaerobiosis , Dioxigenasas/química , Dioxigenasas/genética , Inhibidores Enzimáticos/metabolismo , Estabilidad de Enzimas , Escherichia coli K12/enzimología , Escherichia coli K12/genética , Homogentisato 1,2-Dioxigenasa , Ácido Homogentísico/análogos & derivados , Ácido Homogentísico/metabolismo , Humanos , Cinética , Maleatos/metabolismo , Oxígeno/metabolismo , Plásmidos/genética , Proteínas Recombinantes/antagonistas & inhibidores , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Espectrometría de Masa por Ionización de Electrospray/métodos , Especificidad por Sustrato , Transfección/métodos
18.
Chem Biol ; 11(9): 1195-203, 2004 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-15380180

RESUMEN

3,5-Dihydroxyphenylglycine is a crucial amino acid monomer in the nonribosomal glycopeptide antibiotic vancomycin. This nonproteinogenic amino acid is constructed from malonyl-CoA by a set of four enzymes, DpgA-D, in the biosynthetic cluster. DpgC is an unusual metal-free, cofactor-free enzyme that consumes O(2) during the conversion of 3,5-dihydroxyphenylacetyl-CoA (DPA-CoA) to the penultimate intermediate 3,5-dihydroxyphenylglyoxylate (DPGx). We show that in anaerobic incubations, DpgC catalyzes the exchange of the C(2)-methylene hydrogens of DPA-CoA at unequal rates, consistent with enzyme-mediated formation of the substrate-derived C(2)-carbanion as an early intermediate. Incubations with (18)O(2) reveal that DpgC transfers both atoms of an O(2) molecule to DPGx product. This establishes DpgC as a 1,2-dioxygenase that mediates thioester cleavage by the oxygen transfer process. These results are consistent with a DPA-CoA C(2)-peroxy intermediate, followed by enzyme-directed alpha-peroxylactone formation and collapse by O-O bond cleavage.


Asunto(s)
Dioxigenasas/metabolismo , Vancomicina/biosíntesis , Anaerobiosis , Deuterio/metabolismo , Dioxigenasas/química , Modelos Químicos , Estructura Molecular , Oxígeno/metabolismo , Isótopos de Oxígeno/metabolismo , Polarografía , Espectrometría de Masa por Ionización de Electrospray
19.
J Biomol Screen ; 16(3): 363-9, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21343600

RESUMEN

The HCV p7 protein is not involved in viral RNA replication but is essential for production of infectious virus. Based on its putative ion channel activity, p7 belongs to a family of viral proteins known as viroporins that oligomerize after insertion into a lipid membrane. To screen for compounds capable of interfering with p7 channel function, a low-throughput liposome-based fluorescent dye permeability assay was modified and converted to a robust high-throughput screening assay. Escherichia coli expressing recombinant p7 were grown in high-density fed-batch fermentation followed by a detergent-free purification using a combination of affinity and reversed-phase chromatography. The phospholipid composition of the liposomes was optimized for both p7 recognition and long-term stability. A counterscreen was developed using the melittin channel-forming peptide to eliminate nonspecific screening hits. The p7 liposome-based assay displayed robust statistics (Z' > 0.75), and sensitivity to inhibition was confirmed using known inhibitors.


Asunto(s)
Evaluación Preclínica de Medicamentos/métodos , Ensayos Analíticos de Alto Rendimiento , Canales Iónicos/metabolismo , Proteínas Recombinantes/metabolismo , Proteínas Virales/metabolismo , Cromatografía Liquida , Humanos , Canales Iónicos/genética , Canales Iónicos/aislamiento & purificación , Liposomas/química , Liposomas/metabolismo , Meliteno/metabolismo , Permeabilidad , Fosfolípidos/química , Fosfolípidos/metabolismo , Estabilidad Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Sensibilidad y Especificidad , Bibliotecas de Moléculas Pequeñas , Proteínas Virales/genética , Proteínas Virales/aislamiento & purificación
20.
Virology ; 387(1): 5-10, 2009 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-19304308

RESUMEN

A functional screen of an adenovirus-delivered shRNA library that targets approximately 4500 host genes was performed to identify cellular factors that regulate hepatitis C virus (HCV) sub-genomic RNA replication. Seventy-three hits were further examined by siRNA oligonucleotide-directed knockdown, and silencing of the PI4KA gene was demonstrated to have a significant effect on the replication of a HCV genotype 1b replicon. Using transient siRNA oligonucleotide transfections and stable shRNA knockdown clones in HuH-7 cells, the PI4KA gene was shown to be essential for the replication of all HCV genotypes tested (1a, 1b and 2a) but not required for bovine viral diarrhea virus (BVDV) RNA replication.


Asunto(s)
Hepacivirus/fisiología , Hepatitis C/enzimología , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , ARN Viral/genética , Replicación Viral/genética , Adenoviridae/genética , Adenoviridae/metabolismo , Adenoviridae/fisiología , Línea Celular Tumoral , Regulación Viral de la Expresión Génica , Técnicas de Silenciamiento del Gen , Biblioteca de Genes , Genoma Viral , Hepacivirus/genética , Hepacivirus/crecimiento & desarrollo , Hepacivirus/metabolismo , Humanos , Antígenos de Histocompatibilidad Menor , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , ARN Interferente Pequeño/metabolismo , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA