RESUMEN
Diabetic foot ulcers (DFUs), a prevalent complication of diabetes mellitus, may result in an amputation. Natural and renewable hydrogels are desirable materials for DFU dressings due to their outstanding biosafety and degradability. However, most hydrogels are usually only used for wound repair and cannot be employed to monitor motion because of their inherent poor mechanical properties and electrical conductivity. Given that proper wound stretching is beneficial for wound healing, the development of natural hydrogel patches integrated with wound repair properties and motion monitoring was expected to achieve efficient and accurate wound healing. Here, we designed a dual-network (chitosan and sodium alginate) hydrogel embedded with lignin-Ag and quercetin-melanin nanoparticles to achieve efficient wound healing and motion monitoring. The double network formed by the covalent bond and electrostatic interaction confers the hydrogel with superior mechanical properties. Instead of the usual chemical reagents, genipin extracted from Gardenia was used as a cross-linking agent for the hydrogel and consequently improved its biosafety. Furthermore, the incorporation of lignin-Ag nanoparticles greatly enhanced the mechanical strength, antibacterial efficacy, and conductivity of the hydrogel. The electrical conductivity of hydrogels gives them the capability of motion monitoring. The motion sensing mechanism is that stretching of the hydrogel induced by motion changes the conductivity of the hydrogel, thus converting the motion into an electrical signal. Meanwhile, quercetin-melanin nanoparticles confer exceptional adhesion, antioxidant, and anti-inflammatory properties to the hydrogels. The system ultimately achieved excellent wound repair and motion monitoring performance and was expected to be used for stretch-assisted safe and accurate wound repair in the future.
Asunto(s)
Quitosano , Conductividad Eléctrica , Hidrogeles , Cicatrización de Heridas , Hidrogeles/química , Cicatrización de Heridas/efectos de los fármacos , Quitosano/química , Animales , Quercetina/química , Quercetina/farmacología , Melaninas/química , Plata/química , Pie Diabético/terapia , Pie Diabético/tratamiento farmacológico , Ratones , Alginatos/química , Nanopartículas del Metal/química , Humanos , Antibacterianos/química , Antibacterianos/farmacología , IridoidesRESUMEN
Six novel click-tambjamines (1-6) bearing an alkyl chain of varying length linked to the imine moiety have been formulated in nanostructured lipid carriers (NLCs) to evaluate their transmembrane anion transport activity both when free (i.e., not encapsulated) and nanoformulated. Nanostructured lipid carriers (NLCs) are an example of drug delivery systems (DDSs) that stand out because of their versatility. In this work we show that NLCs can be used to efficiently formulate highly lipophilic anionophores and experiments conducted in model liposomes reveal that these formulations are adequate to deliver anionophores without compromising their transport activity. This result paves the way to facilitate the study of highly lipophilic anionophores and their potential use as future drugs.
Asunto(s)
Portadores de Fármacos , Nanoestructuras , Sistemas de Liberación de Medicamentos , Liposomas , Lípidos , Tamaño de la PartículaRESUMEN
BACKGROUND: Treatment of patients affected by severe burns is challenging, especially due to the high risk of Pseudomonas infection. In the present work, we have generated a novel model of bioartificial human dermis substitute by tissue engineering to treat infected wounds using fibrin-agarose biomaterials functionalized with nanostructured lipid carriers (NLCs) loaded with two anti-Pseudomonas antibiotics: sodium colistimethate (SCM) and amikacin (AMK). RESULTS: Results show that the novel tissue-like substitutes have strong antibacterial effect on Pseudomonas cultures, directly proportional to the NLC concentration. Free DNA quantification, WST-1 and Caspase 7 immunohistochemical assays in the functionalized dermis substitute demonstrated that neither cell viability nor cell proliferation were affected by functionalization in most study groups. Furthermore, immunohistochemistry for PCNA and KI67 and histochemistry for collagen and proteoglycans revealed that cells proliferated and were metabolically active in the functionalized tissue with no differences with controls. When functionalized tissues were biomechanically characterized, we found that NLCs were able to improve some of the major biomechanical properties of these artificial tissues, although this strongly depended on the type and concentration of NLCs. CONCLUSIONS: These results suggest that functionalization of fibrin-agarose human dermal substitutes with antibiotic-loaded NLCs is able to improve the antibacterial and biomechanical properties of these substitutes with no detectable side effects. This opens the door to future clinical use of functionalized tissues.
Asunto(s)
Antibacterianos , Lípidos/química , Nanoestructuras , Piel Artificial , Ingeniería de Tejidos/métodos , Amicacina/química , Amicacina/farmacología , Antibacterianos/química , Antibacterianos/farmacología , Materiales Biocompatibles/química , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Colistina/análogos & derivados , Colistina/química , Colistina/farmacología , Portadores de Fármacos/química , Portadores de Fármacos/toxicidad , Fibroblastos/citología , Humanos , Nanoestructuras/química , Nanoestructuras/toxicidadRESUMEN
The usefulness of nanotechnology to increase the bioavailability of drugs and decrease their toxicity may be a tool to deal with multiresistant P. aeruginosa (Mr-Pa) respiratory infections. We describe the preparation and the in vivo efficacy and safety of sodium colistimethate-loaded nanostructured lipid carriers (SCM-NLC) by the pulmonary and intramuscular routes. Nanoparticles showed 1-2 mg/L minimum inhibitory concentration against eight extensively drug-resistant P. aeruginosa strains. In vivo, SCM-NLC displayed significantly lower CFU/g lung than the saline and similar to that of the free SCM, even the dose in SCM-NLC group was lower than free SCM. There was no tissue damage related to the treatments. Biodistribution assessments showed a mild systemic absorption after nebulization and a notorious absorption after IM route. Altogether, it could be concluded that SCM-NLC were effective against P. aeruginosa in vivo, not toxic and distribute efficiently to the lung and liver after pulmonary or intramuscular administrations.
Asunto(s)
Colistina/análogos & derivados , Portadores de Fármacos/química , Lípidos/química , Pulmón/microbiología , Nanoestructuras/química , Pseudomonas aeruginosa/efectos de los fármacos , Animales , Colistina/administración & dosificación , Colistina/efectos adversos , Colistina/farmacología , Femenino , Inflamación/patología , Inyecciones Intramusculares , Pulmón/patología , Ratones Endogámicos BALB C , Pruebas de Sensibilidad Microbiana , Nanoestructuras/toxicidad , Nanoestructuras/ultraestructura , Distribución Tisular/efectos de los fármacos , Pruebas de Toxicidad , Resultado del TratamientoRESUMEN
Antimicrobial resistance (AMR) is a global health issue, which needs to be tackled without further delay. The World Health Organization(WHO) has classified three gram-negative bacteria, Pseudomonas aeruginosa, Klebsiella pneumonia and Acinetobacter baumannii, as the principal responsible for AMR, mainly causing difficult to treat nosocomial lung and wound infections. In this regard, the need for colistin and amikacin, the re-emerged antibiotics of choice for resistant gram-negative infections, will be examined as well as their associated toxicity. Thus, current but ineffective clinical strategies designed to prevent toxicity related to colistin and amikacin will be reported, highlighting the importance of lipid-based drug delivery systems (LBDDSs), such as liposomes, solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs), as efficient delivery strategies for reducing antibiotic toxicity. This review reveals that colistin- and amikacin-NLCs are promising carriers with greater potential than liposomes and SLNs to safely tackle AMR, especially for lung and wound infections.
Asunto(s)
Acinetobacter baumannii , Neumonía Bacteriana , Infección de Heridas , Humanos , Amicacina/farmacología , Colistina/farmacología , Liposomas/farmacología , Farmacorresistencia Bacteriana Múltiple , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Neumonía Bacteriana/tratamiento farmacológico , Pseudomonas aeruginosa , Sistemas de Liberación de Medicamentos , Pulmón , Infección de Heridas/tratamiento farmacológico , Pruebas de Sensibilidad MicrobianaRESUMEN
Negatively charged microspheres (NCMs) are postulated as a new form of treatment for chronic wounds. Despite the efficacy shown at clinical level, more studies are required to demonstrate their safety and local effect. The objective of the work was to confirm the lack of NCM systemic absorption performing a biodistribution study of the NCMs in an open wound rat animal model. To this end, radiolabeling of NCMs with technetium-99 m was optimized and biodistribution studies were performed by in vivo SPEC/CT imaging and ex vivo counting during 24 h after topical administration. The studies were performed on animals treated with a single or repeated dose to study the effect of macrophages during a prolonged treatment. NCM radiolabeling was achieved in a simple, efficient and stable manner with high yield. SPECT/CT images showed that almost all NCMs (about 85 %) remained on the wound for 24 h either after single or multiple administrations. Ex vivo biodistribution studies confirmed that there was no accumulation of NCMs in any organ or tissue except in the wound area, suggesting a lack of absorption. In conclusion, NCMs can be considered safe as local wound treatment since they remain at the administration area.
Asunto(s)
Tecnecio , Administración Tópica , Animales , Microesferas , Ratas , Distribución TisularRESUMEN
Human skin keratinocyte primary cultures can be established from skin biopsies with culture media containing epithelial growth factor (EGF). Although current methods are efficient, optimization is required to accelerate the procedure and obtain these cultures in less time. In the present study, we evaluated the effect of novel formulations based on EGF-loaded nanostructured lipid carriers (NLC). First, biosafety of NLC containing recombinant human EGF (NLC-rhEGF) was verified in immortalized skin keratinocytes and cornea epithelial cells, and in two epithelial cancer cell lines, by quantifying free DNA released to the culture medium. Then we established primary cell cultures of human skin keratinocytes with basal culture media (BM) and BM supplemented with NLC-rhEGF, liquid EGF (L-rhEGF), or NLC alone (NLC-blank). The results showed that cells isolated by enzymatic digestion and cultured with or without a feeder layer had a similar growth rate regardless of the medium used. However, the explant technique showed higher efficiency when NLC-rhEGF culture medium was used, compared to BM, L-rhEGF, or NLC-blank. Gene expression analysis showed that NLC-rhEGF was able to increase EGFR gene expression, along with that of other genes related to cytokeratins, cell-cell junctions, and keratinocyte maturation and differentiation. In summary, these results support the use of NLC-rhEGF to improve the efficiency of explant-based methods in the efficient generation of human keratinocyte primary cell cultures for tissue engineering use.
RESUMEN
Negatively charged microspheres (NCMs) represent a new therapeutic approach for wound healing since recent clinical trials have shown NCM efficacy in the recovery of hard-to-heal wounds that tend to stay in the inflammatory phase, unlocking the healing process. The aim of this study was to elucidate the NCM mechanism of action. NCMs were extracted from a commercial microsphere formulation (PolyHeal® Micro) and cytotoxicity, attachment, proliferation and viability assays were performed in keratinocytes and dermal fibroblasts, while macrophages were used for the phagocytosis and polarization assays. We demonstrated that cells tend to attach to the microsphere surface, and that NCMs are biocompatible and promote cell proliferation at specific concentrations (50 and 10 NCM/cell) by a minimum of 3 fold compared to the control group. Furthermore, NCM internalization by macrophages seemed to drive these cells to a noninflammatory condition, as demonstrated by the over-expression of CD206 and the under-expression of CD64, M2 and M1 markers, respectively. NCMs are an effective approach for reverting the chronic inflammatory state of stagnant wounds (such as diabetic wounds) and thus for improving wound healing.
RESUMEN
This study focuses on the development and characterization of an ultra thin hydro-film based on lactose-mediated crosslinking of fish gelatin by Maillard reaction. Lactose results in the only efficient crosslinker able to produce resistant to handling hydro-films when compared to conventional crosslinkers such as glutaraldehyde or genipin (tested at 25 and 37°C in phosphate buffer saline solution (PBS)).The disappearance of the peak related to the N-containing groups (XPS) and the images obtained by SEM and AFM demonstrate the highly ordered nano-scaled structure of lactose-crosslinked gelatin, confirming the crosslinking efficiency. This dressing presents high hydrophilicity and mild occlusivity, as shown by the swelling curve (max swelling at 5min) and by the occlusion factor of 25.17±0.99%, respectively. It demonstrates high stability to hydrolysis or cell-mediated degradation. Moreover, ISO 10993-5:2009 biocompatibility assay results in undetectable cytotoxicity effects. Spreading, adhesion and proliferation assays confirm the excellent adaptability of the cells onto the hydro-film surface without invading the dressing. Finally, the hydro-film enables the controlled delivery of therapeutic factors, such as the epidermal growth factor (EGF). This study demonstrates that lactose-mediated crosslinking is able to produce ultra thin gelatin hydro-films with suitable properties for biomedical applications, such as wound healing.