Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Reproduction ; 165(3): 235-248, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36488195

RESUMEN

In brief: The endocrine and immunological disruption induced by hyperthyroidism could alter gestation, placenta, and fetal development. This study suggests an immunological role of thyroid hormones in gestation. Abstract: Thyroid dysfunctions lead to metabolic, angiogenic, and developmental alterations at the maternal-fetal interface that cause reproductive complications. Thyroid hormones (THs) act through their nuclear receptors that interact with other steroid hormone receptors. Currently, immunological regulation by thyroid status has been characterized to a far less extent. It is well known that THs exert regulatory function on immune cells and modulate cytokine expression, but how hyperthyroidism (hyper) modulates placental immunological aspects leading to placental alterations is unknown. This work aims to throw light on how hyper modulates immunological and morphological placental aspects. Control and hyper (induced by a daily s.c. injection of T4 0.25 mg/kg) Wistar rats were mated 8 days after starting T4 treatment and euthanized on days 19 (G19) and 20 (G20) of pregnancy. We removed the placenta to perform qPCR, flow cytometry, immunohistochemistry, Western blot and histological analysis, and amniotic fluid and serum to evaluate hormone levels. We observed that hyper increases the fetal number, fetal weight, and placental weight on G19. Moreover, hyper induced an endocrine imbalance with higher serum corticosterone and changed placental morphology, specifically the basal zone and decidua. These changes were accompanied by an increased mRNA expression of glucocorticoid receptor and monocyte chemoattractant protein-1, an increased mRNA and protein expression of prolactin receptor, and an increase in CD45+ infiltration. Finally, by in vitro assays, we evidenced that TH induced immune cell activation. In summary, we demonstrated that hyper modulates immunological and morphological placental aspects and induces fetal phenotypic changes, which could be related to preterm labor observed in hyper.


Asunto(s)
Hipertiroidismo , Placenta , Ratas , Animales , Embarazo , Femenino , Placenta/metabolismo , Ratas Wistar , Hormonas Tiroideas/metabolismo , Hipertiroidismo/metabolismo , Hipertiroidismo/patología , ARN Mensajero/metabolismo , Leucocitos/metabolismo
2.
Neuroendocrinology ; 113(3): 304-318, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36030779

RESUMEN

INTRODUCTION: OFA hr/hr rats have deficient lactation with impaired suckling-induced PRL release. Unlike their background strain, Sprague-Dawley (SD) rats, OFA rats display abnormal mediobasal hypothalamus (MBH) dopaminergic tone during late pregnancy and lactation. We explored if the expression of MBH components, including various receptors (R) and proteins that regulate the dopaminergic system, is altered in mid-lactating OFA compared to SD rats, which may be associated with the abnormality. METHODS: Four groups of mid-lactating rats were used: continuous lactation; pups separated overnight; 30-min suckling (S); and 2 h or 4 h S after separation. Mothers were sacrificed to obtain serum for PRL RIA and MBHs to determine tyrosine hydroxylase (TH), PRL-R, PRL signaling molecules (activator: STAT5b; inhibitors: SOCS1, SOCS3, CIS), opioids (PENK, PDYN), and µ- and κ-opioid R (MOR, KOR) mRNA expression by qPCR and phospho-TH (p-TH) and TH proteins by Western blot. RESULTS: Suckling-induced PRL was lower in OFA and p-TH expression diminished in both strains. Separation increased TH mRNA and protein in SD, which decreased after 4 h S, but OFA protein levels remained unchanged. Separation of pups also resulted in decreased PRL-R and CIS expression in SD but increased PRL-R and SOCS3 in OFA. Despite the lower PRL-R, STAT5b, SOCS1, and SOCS3 levels in OFA compared to SD, suckling diminished them further. We observed subtle changes in SD opioids and their R, but in OFA, suckling decreased PENK, KOR, and MOR. CONCLUSION: The different patterns of TH, opioids, their R, and PRL signaling inhibitor expression with conserved TH activation by suckling may disturb the balance between stimulation and inhibition of PRL release resulting in impaired suckling-induced PRL secretion in OFA rats.


Asunto(s)
Lactancia , Prolactina , Femenino , Ratas , Embarazo , Animales , Ratas Sprague-Dawley , Prolactina/metabolismo , Analgésicos Opioides/metabolismo , Hipotálamo/metabolismo , Dopamina , Receptores de Prolactina/metabolismo , ARN Mensajero/metabolismo
3.
Reproduction ; 146(3): 233-42, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23904563

RESUMEN

Mammary stroma is composed of various cell types, including migratory leukocytes. Although mammary antibody-secreting cells have been extensively studied, reports focusing on mammary T cells are scarce. It is thought that the recruitment mechanism of leukocytes to the mammary gland (MG) is controlled by pregnancy- and lactation-specific stimuli. But whether prolactin (PRL) modulates the T-cell population in MG is still unknown. Our aim was to study the relationship between PRL levels and T and B cells during early lactation (L2, day 2 post partum) and mid-lactation (L12, day 12 of lactation). In order to investigate whether PRL is associated with homing events to MG, female Sprague Dawley (SD) and SD-derived desmoglein 4(-/-) hairless (phenotype with lactation deficit, OFA hr/hr) rats were killed during estrus, pregnancy, and post partum, and blood, MG, and corpora lutea were obtained to perform fluorescent-activated cell sorting (FACS), real-time PCR, and histological and RIA studies. Serum PRL levels were lower in OFA hr/hr rats than in SD rats during early lactation. MG of OFA hr/hr rats showed less secretory material compared with SD rats. FACS analysis showed lower percentage of MG CD3+ cells in OFA hr/hr rats compared with SD rats on L2 and L12. OFA hr/hr rats showed higher absolute numbers of circulating CD3+ cells compared with SD rats on L2 but not on L12. These results show that T-cell population in MG is affected in early lactating OFA hr/hr rats and strongly suggest that serum PRL levels may be involved in the homing events to MG, probably helping antibody-secreting cells and protecting the gland during lactation development.


Asunto(s)
Lactancia , Glándulas Mamarias Animales/inmunología , Prolactina/fisiología , Linfocitos T/fisiología , Animales , Linfocitos B/fisiología , Femenino , Leucocitos/metabolismo , Recuento de Linfocitos , Masculino , Glándulas Mamarias Animales/crecimiento & desarrollo , Embarazo , Ratas , Ratas Sprague-Dawley , Receptores de Quimiocina/metabolismo
4.
Med Biol Eng Comput ; 60(10): 2995-3007, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36018532

RESUMEN

Computerized techniques for image analysis are critical for progress in cell biology. The complexity of the data in current methods eliminates the need for manual image analysis and usually requires the application of multiple algorithms sequentially to the images. Our aim was to develop a software for immunohistochemical analysis of brain dopaminergic neurons combining several computational approaches to automatically analyze and quantify their number in the substantia nigra after a neurotoxic injury. For this purpose, we used a Parkinson's disease animal model to test our application. The dopaminergic neurotoxin, 6-hydroxydopamine, was administered in adult male rats to damage dopaminergic neurons in substantia nigra and to induce hemiparkinsonism. The lesion was corroborated by behavioral evaluation in response to apomorphine and amphetamine. The animals were euthanized and their brains processed for tyrosine hydroxylase immunohistochemistry for dopamine neuron identification. Neurons positive for tyrosine hydroxylase were evaluated in substantia nigra by light microscopy. The images were used to show quantification applicability. To test our software counting accuracy and validity, automatic dopamine neuron number was correlated with the data obtained by three independent observers. Several parameters were used to depict neuronal function in dataset images from control and lesioned brains. In conclusion, we could perform an automated quantification of dopaminergic neurons and corroborate the validity and accuracy of a freely available software.


Asunto(s)
Neuronas Dopaminérgicas , Tirosina 3-Monooxigenasa , Animales , Neuronas Dopaminérgicas/metabolismo , Masculino , Oxidopamina/toxicidad , Ratas , Programas Informáticos , Sustancia Negra/metabolismo , Sustancia Negra/patología , Tirosina 3-Monooxigenasa/metabolismo
5.
Front Immunol ; 12: 625617, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33995349

RESUMEN

Desmogleins are involved in cell adhesion conferring structural skin integrity. However, their role in inflammation has been barely studied, and whether desmoglein-4 modulates psoriasis lesions is completely unknown. In this study, we assessed the impact of desmoglein-4 deficiency on the severity of imiquimod (IMQ)-induced skin inflammation and psoriasiform lesions. To this end, desmoglein-4-/- Oncins France Colony A (OFA) with Sprague-Dawley (SD) genetic background were used. Additionally, human RNA-Seq datasets from psoriasis (PSO), atopic dermatitis (AD), and a healthy cohort were analyzed to obtain a desmosome gene expression overview. OFA rats displayed an intense skin inflammation while SD showed only mild inflammatory changes after IMQ treatment. We found that IMQ treatment increased CD3+ T cells in skin from both OFA and SD, being higher in desmoglein-4-deficient rats. In-depth transcriptomic analysis determined that PSO displayed twofold less DSG4 expression than healthy samples while both, PSO and AD showed more than three-fold change expression of DSG3 and DSC2 genes. Although underlying mechanisms are still unknown, these results suggest that the lack of desmoglein-4 may contribute to immune-mediated skin disease progression, promoting leukocyte recruitment to skin. Although further research is needed, targeting desmoglein-4 could have a potential impact on designing new biomarkers for skin diseases.


Asunto(s)
Desmogleínas/deficiencia , Psoriasis/metabolismo , Piel/metabolismo , Animales , Complejo CD3/metabolismo , Estudios de Casos y Controles , Quimiotaxis de Leucocito , Desmogleínas/genética , Modelos Animales de Enfermedad , Regulación hacia Abajo , Femenino , Humanos , Imiquimod , Mediadores de Inflamación/metabolismo , Psoriasis/inducido químicamente , Psoriasis/inmunología , Psoriasis/patología , Ratas Sprague-Dawley , Ratas Transgénicas , Piel/inmunología , Piel/patología , Linfocitos T/inmunología , Linfocitos T/metabolismo
6.
J Exp Zool A Ecol Integr Physiol ; 329(10): 536-546, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30096217

RESUMEN

Although the immunosuppressive effect of chronic stress has been established, a stress response that downregulates the whole immune system does not make biological sense, especially if an animal has to endure difficult times in which there is also increased infection risk. At high animal densities, animals are faced simultaneously with food restriction (FR), social conflict (SC), and greater parasite-pathogen exposure. We hypothesized that the stress response to chronic stressors that covary with infection risk is not entirely immunosuppressive. Our prediction was that a chronically stressed animal would respond by enhancing innate defenses, while reducing investment in acquired immunity. In a laboratory setting, rats were exposed to prolonged FR and/or SC, and natural and specific antibody levels were repeatedly measured. Our prediction was fulfilled only partly, as FR and SC interacted to enhance natural antibodies, but rats exposed to either or both stressors also showed significantly higher levels of specific antibodies. These results suggest that, in the rat, chronic stress results in a prioritization of both innate and acquired humoral defenses, which makes biological sense provided the stressors examined usually signal an increased infection risk.


Asunto(s)
Anticuerpos/sangre , Estrés Fisiológico/inmunología , Animales , Inocuidad de los Alimentos , Densidad de Población , Ratas , Albúmina Sérica Bovina/inmunología , Conducta Social , Estrés Fisiológico/fisiología , Factores de Tiempo , Regulación hacia Arriba
7.
Peptides ; 49: 74-80, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24028792

RESUMEN

We previously showed that short-term hypo- and hyperthyroidism induce changes in neuropeptide glutamic-acid-isoleucine-amide (NEI) concentrations in discrete brain areas in male rats. To investigate the possible effects of hypo- and hyperthyroidism on NEI concentrations mainly in hypothalamic areas related to reproduction and behavior, female rats were sacrificed at different days of the estrous cycle. Circulating luteinizing hormone (LH), estradiol and progesterone concentrations were measured in control, hypothyroid (hypoT, treated with PTU during 7-9 days) and hyperthyroid (hyperT, l-T4 during 4-7 days) animals. Both treatments blunted the LH surge. Hypo- and hyperthyroidism increased estradiol concentrations during proestrus afternoon (P-PM), although hypoT rats showed lower values compared to control during proestrus morning (P-AM). Progesterone levels were higher in all groups at P-PM and in the hyperT during diestrus morning (D2). NEI concentrations were lower in hypoT rats during the estrous cycle except in estrus (E) in the peduncular part of the lateral hypothalamus (PLH). They were also reduced by both treatments in the perifornical part of the lateral hypothalamus (PeFLH) during P-PM. Hypothyroidism led to higher NEI concentrations during P-PM in the organum vasculosum of the lamina terminalis and anteroventral periventricular nucleus (OVLT+AVPV). The present results indicate that NEI concentration is regulated in a complex manner by hypo- and hyperthyroidism in the different areas studied, suggesting a correlation between NEI values and the variations of gonadal steroid levels during estrous cycle. These changes could be, in part, responsible for the alterations observed in the hypothalamic-pituitary-gonadal axis in these pathologies.


Asunto(s)
Encéfalo/metabolismo , Estro , Hipertiroidismo/fisiopatología , Hipotiroidismo/fisiopatología , Oligopéptidos/metabolismo , Reproducción , Animales , Estradiol/sangre , Femenino , Hormona Luteinizante/sangre , Progesterona/sangre , Ratas , Ratas Wistar , Tirotropina/sangre
8.
Peptides ; 32(6): 1249-54, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21530599

RESUMEN

To date, there has been only one in vitro study of the relationship between neuropeptide EI (NEI) and the hypothalamic-pituitary-thyroid (HPT) axis. To investigate the possible relationship between NEI and the HPT axis, we developed a rat model of hypothyroidism and hyperthyroidism that allows us to determine whether NEI content is altered in selected brain areas after treatment, as well as whether such alterations are related to the time of day. Hypothyroidism and hyperthyroidism, induced in male rats, with 6-propyl-1-thiouracil and l-thyroxine, respectively, were confirmed by determination of triiodothyronine, total thyroxine, and thyrotropin levels. All groups were studied at the morning and the afternoon. In rats with hypothyroidism, NEI concentration, evaluated on postinduction days 7 and 24, was unchanged or slightly elevated on day 7 but was decreased on day 24. In rats with hyperthyroidism, NEI content, which was evaluated after 4 days of l-thyroxine administration, was slightly elevated, principally in the preoptic area in the morning and in the median eminence-arcuate nucleus and pineal gland in the afternoon, the morning and afternoon NEI contents being similar in the controls. These results provide the bases to pursue the study of the interaction between NEI and the HPT axis.


Asunto(s)
Encéfalo/metabolismo , Hipertiroidismo/metabolismo , Hipotiroidismo/metabolismo , Eminencia Media/metabolismo , Oligopéptidos/biosíntesis , Hipófisis/metabolismo , Glándula Tiroides/metabolismo , Animales , Encéfalo/efectos de los fármacos , Hipertiroidismo/inducido químicamente , Hipertiroidismo/fisiopatología , Hipotiroidismo/inducido químicamente , Hipotiroidismo/fisiopatología , Masculino , Eminencia Media/efectos de los fármacos , Hipófisis/efectos de los fármacos , Propiltiouracilo/efectos adversos , ARN Mensajero , Ratas , Ratas Sprague-Dawley , Glándula Tiroides/efectos de los fármacos , Tirotropina/biosíntesis , Tiroxina/efectos adversos , Triyodotironina/biosíntesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA