Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Regul Toxicol Pharmacol ; 139: 105368, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36841350

RESUMEN

The ICH S7A guideline on safety pharmacology studies released over 20 years ago largely achieved its objective "to help protect clinical trial participants and patients receiving marketed products from potential adverse effects of pharmaceuticals". Although, Phase I clinical trials are generally very safe, the incidence and severity of adverse events, the safety related attrition and product withdrawal remain elevated during late-stage clinical development and post approval, a proportion of which can be attributed at least in part to safety pharmacology related issues. Considering the latest scientific and technological advancements in drug safety science, the paradigm shift of the drug discovery and development process and the continuously evolving regulatory landscape, we recommend revisiting, adapting and evolving the ICH S7A guideline. This might offer opportunities i) to select and progress optimized drugs with increased confidence in success, ii) to refine and adapt the clinical monitoring at all stages of clinical development resulting in an optimized benefit/risk assessment, iii) to increase likelihood of regulatory acceptance in a way compatible with an expedited and streamlined drug discovery and development process to benefit patients and iv) to avoid the unnecessary use of animals in 'tick-the-box' studies and encourage alternative approaches. As presented in the article, several options could be envisioned to revisit and adapt the ICH S7A taking into consideration several key features.


Asunto(s)
Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Animales , Evaluación Preclínica de Medicamentos
2.
Arch Toxicol ; 96(7): 2033-2047, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35488128

RESUMEN

Identification of early biomarkers of heart injury and drug-induced cardiotoxicity is important to eliminate harmful drug candidates early in preclinical development and to prevent severe drug effects. The main objective of this study was to investigate the expression of microRNAs (miRNAs) in human-induced pluripotent stem cell cardiomyocytes (hiPSC-CM) in response to a broad range of cardiotoxic drugs. Next generation sequencing was applied to hiPSC-CM treated for 72 h with 40 drugs falling into the categories of functional (i.e., ion channel blockers), structural (changes in cardiomyocytes structure), and general (causing both functional and structural) cardiotoxicants as well as non-cardiotoxic drugs. The largest changes in miRNAs expression were observed after treatments with structural or general cardiotoxicants. The number of deregulated miRNAs was the highest for idarubicin, mitoxantrone, and bortezomib treatments. RT-qPCR validation confirmed upregulation of several miRNAs across multiple treatments at therapeutically relevant concentrations: hsa-miR-187-3p, hsa-miR-146b-5p, hsa-miR-182-5p (anthracyclines); hsa-miR-365a-5p, hsa-miR-185-3p, hsa-miR-184, hsa-miR-182-5p (kinase inhibitors); hsa-miR-182-5p, hsa-miR-126-3p and hsa-miR-96-5p (common some anthracyclines, kinase inhibitors and bortezomib). Further investigations showed that an upregulation of hsa-miR-187-3p and hsa-miR-182-5p could serve as a potential biomarker of structural cardiotoxicity and/or an additional endpoint to characterize cardiac injury in vitro.


Asunto(s)
Cardiotoxicidad , Células Madre Pluripotentes Inducidas , MicroARNs , Miocitos Cardíacos , Antraciclinas/efectos adversos , Biomarcadores , Bortezomib/efectos adversos , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , MicroARNs/metabolismo , Miocitos Cardíacos/metabolismo
3.
Int J Toxicol ; 39(4): 274-293, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32406289

RESUMEN

INTRODUCTION: The Safety Pharmacology Society (SPS) conducted a membership survey to examine industry practices related mainly to cardiovascular (CV) safety pharmacology (SP). METHODS: Questions addressed nonclinical study design, data analysis methods, drug-induced effects, and conventional and novel CV assays. RESULTS: The most frequent therapeutic area targeted by drugs developed by the companies/institutions that employ survey responders was oncology. The most frequently observed drug-mediated effects included an increased heart rate, increased arterial blood pressure, hERG (IKr) block, decreased arterial blood pressure, decreased heart rate, QTc prolongation, and changes in body temperature. Broadly implemented study practices included Latin square crossover study design with n = 4 for nonrodent CV studies, statistical analysis of data (eg, analysis of variance), use of arrhythmia detection software, and the inclusion of data from all study animals when integrating SP studies into toxicology studies. Most responders frequently used individual animal housing conditions. Responders commonly evaluated drug effects on multiple ion channels, but in silico modeling methods were used much less frequently. Most responders rarely measured the J-Tpeak interval in CV studies. Uncertainties relative to Standard for Exchange of Nonclinical Data applications for data derived from CV SP studies were common. Although available, the use of human induced pluripotent stem cell cardiomyocytes remains rare. The respiratory SP study was rarely involved with identifying drug-induced functional issues. Responders indicated that the study-derived no observed effect level was more frequently determined than the no observed adverse effect level in CV SP studies; however, a large proportion of survey responders used neither.


Asunto(s)
Enfermedades Cardiovasculares/inducido químicamente , Evaluación Preclínica de Medicamentos/métodos , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Farmacología/métodos , Animales , Sistema Cardiovascular , Interpretación Estadística de Datos , Industria Farmacéutica , Humanos , Proyectos de Investigación , Encuestas y Cuestionarios
4.
Int J Toxicol ; 38(1): 23-32, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30567462

RESUMEN

INTRODUCTION: Based on the ICH S7B and E14 guidance documents, QT interval (QTc) is used as the primary in vivo biomarker to assess the risk of drug-induced torsades de pointes (TdP). Clinical and nonclinical data suggest that drugs that prolong the corrected QTc with balanced multiple ion channel inhibition (most importantly the l-type calcium, Cav1.2, and persistent or late inward sodium current, Nav1.5, in addition to human Ether-à-go-go-Related Gene [hERG] IKr or Kv11.1) may have limited proarrhythmic liability. The heart rate-corrected J to T-peak (JTpc) measurement in particular may be considered to discriminate selective hERG blockers from multi-ion channel blockers. METHODS: Telemetry data from Beagle dogs given dofetilide (0.3 mg/kg), sotalol (32 mg/kg), and verapamil (30 mg/kg) orally and Cynomolgus monkeys given medetomidine (0.4 mg/kg) orally were retrospectively analyzed for effects on QTca, JTpca, and T-peak to T-end covariate adjusted (Tpeca) interval using individual rate correction and super intervals (calculated from 0-6, 6-12, 12-18, and 18-24 hours postdose). RESULTS: Dofetilide and cisapride (IKr or Kv11.1 blockers) were associated with significant increases in QTca and JTpca, while sotalol was associated with significant increases in QTca, JTpca, and Tpeca. Verapamil (a Kv11.1 and Cav1.2 blocker) resulted in a reduction in QTca and JTpca, however, and increased Tpeca. Medetomidine was associated with a reduction in Tpeca and increase in JTpca. DISCUSSION: Results from this limited retrospective electrocardiogram analysis suggest that JTpca and Tpeca may discriminate selective IKr blockers and multichannel blockers and could be considered in the context of an integrated comprehensive proarrhythmic risk assessment.


Asunto(s)
Bloqueadores de los Canales de Calcio/farmacología , Electrocardiografía/efectos de los fármacos , Frecuencia Cardíaca/efectos de los fármacos , Bloqueadores de los Canales de Potasio/farmacología , Bloqueadores de los Canales de Sodio/farmacología , Animales , Biomarcadores , Cisaprida/farmacología , Perros , Evaluación Preclínica de Medicamentos , Síndrome de QT Prolongado/inducido químicamente , Macaca fascicularis , Masculino , Medetomidina/farmacología , Fenetilaminas/farmacología , Sotalol/farmacología , Sulfonamidas/farmacología , Telemetría , Verapamilo/farmacología
5.
Europace ; 18(9): 1287-98, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26622055

RESUMEN

Both biomedical research and clinical practice rely on complex datasets for the physiological and genetic characterization of human hearts in health and disease. Given the complexity and variety of approaches and recordings, there is now growing recognition of the need to embed computational methods in cardiovascular medicine and science for analysis, integration and prediction. This paper describes a Workshop on Computational Cardiovascular Science that created an international, interdisciplinary and inter-sectorial forum to define the next steps for a human-based approach to disease supported by computational methodologies. The main ideas highlighted were (i) a shift towards human-based methodologies, spurred by advances in new in silico, in vivo, in vitro, and ex vivo techniques and the increasing acknowledgement of the limitations of animal models. (ii) Computational approaches complement, expand, bridge, and integrate in vitro, in vivo, and ex vivo experimental and clinical data and methods, and as such they are an integral part of human-based methodologies in pharmacology and medicine. (iii) The effective implementation of multi- and interdisciplinary approaches, teams, and training combining and integrating computational methods with experimental and clinical approaches across academia, industry, and healthcare settings is a priority. (iv) The human-based cross-disciplinary approach requires experts in specific methodologies and domains, who also have the capacity to communicate and collaborate across disciplines and cross-sector environments. (v) This new translational domain for human-based cardiology and pharmacology requires new partnerships supported financially and institutionally across sectors. Institutional, organizational, and social barriers must be identified, understood and overcome in each specific setting.


Asunto(s)
Cardiología/métodos , Fármacos Cardiovasculares/uso terapéutico , Cardiopatías , Farmacología/métodos , Investigación Biomédica Traslacional/métodos , Animales , Biomarcadores/metabolismo , Técnicas de Imagen Cardíaca , Cardiotoxicidad , Fármacos Cardiovasculares/efectos adversos , Conducta Cooperativa , Difusión de Innovaciones , Técnicas Electrofisiológicas Cardíacas , Cardiopatías/diagnóstico por imagen , Cardiopatías/tratamiento farmacológico , Cardiopatías/metabolismo , Cardiopatías/fisiopatología , Humanos , Comunicación Interdisciplinaria , Modelos Cardiovasculares , Modelación Específica para el Paciente , Valor Predictivo de las Pruebas , Pronóstico , Asociación entre el Sector Público-Privado
6.
Regul Toxicol Pharmacol ; 80: 348-57, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27155597

RESUMEN

Central Nervous System (CNS)-related safety concerns are major contributors to delays and failure during the development of new candidate drugs (CDs). CNS-related safety data on 141 small molecule CDs from five pharmaceutical companies were analyzed to identify the concordance between rodent multi-parameter neurofunctional assessments (Functional Observational Battery: FOB, or Irwin test: IT) and the five most common adverse events (AEs) in Phase I clinical trials, namely headache, nausea, dizziness, fatigue/somnolence and pain. In the context of this analysis, the FOB/IT did not predict the occurrence of these particular AEs in man. For AEs such as headache, nausea, dizziness and pain the results are perhaps unsurprising, as the FOB/IT were not originally designed to predict these AEs. More unexpected was that the FOB/IT are not adequate for predicting 'somnolence/fatigue' nonclinically. In drug development, these five most prevalent AEs are rarely responsible for delaying or stopping further progression of CDs. More serious AEs that might stop CD development occurred at too low an incidence rate in our clinical dataset to enable translational analysis.


Asunto(s)
Conducta Animal/efectos de los fármacos , Enfermedades del Sistema Nervioso Central/inducido químicamente , Sistema Nervioso Central/efectos de los fármacos , Ensayos Clínicos Fase I como Asunto , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/etiología , Pruebas de Toxicidad/métodos , Animales , Sistema Nervioso Central/fisiopatología , Enfermedades del Sistema Nervioso Central/fisiopatología , Relación Dosis-Respuesta a Droga , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/fisiopatología , Humanos , Ratones , Ratas , Reproducibilidad de los Resultados , Medición de Riesgo , Especificidad de la Especie
7.
Handb Exp Pharmacol ; 229: 3-45, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26091634

RESUMEN

Professor Gerhard Zbinden recognized in the 1970s that the standards of the day for testing new candidate drugs in preclinical toxicity studies failed to identify acute pharmacodynamic adverse events that had the potential to harm participants in clinical trials. From his vision emerged the field of safety pharmacology, formally defined in the International Conference on Harmonization (ICH) S7A guidelines as "those studies that investigate the potential undesirable pharmacodynamic effects of a substance on physiological functions in relation to exposure in the therapeutic range and above." Initially, evaluations of small-molecule pharmacodynamic safety utilized efficacy models and were an ancillary responsibility of discovery scientists. However, over time, the relationship of these studies to overall safety was reflected by the regulatory agencies who, in directing the practice of safety pharmacology through guidance documents, prompted transition of responsibility to drug safety departments (e.g., toxicology). Events that have further shaped the field over the past 15 years include the ICH S7B guidance, evolution of molecular technologies leading to identification of new therapeutic targets with uncertain toxicities, introduction of data collection using more sophisticated and refined technologies, and utilization of transgenic animal models probing critical scientific questions regarding novel targets of toxicity. The collapse of the worldwide economy in the latter half of the first decade of the twenty-first century, continuing high rates of compound attrition during clinical development and post-approval and sharply increasing costs of drug development have led to significant strategy changes, contraction of the size of pharmaceutical organizations, and refocusing of therapeutic areas of investigation. With these changes has come movement away from dedicated internal safety pharmacology capability to utilization of capabilities within external contract research organizations. This movement has created the opportunity for the safety pharmacology discipline to come "full circle" and return to the drug discovery arena (target identification through clinical candidate selection) to contribute to the mitigation of the high rate of candidate drug failure through better compound selection decision making. Finally, the changing focus of science and losses in didactic training of scientists in whole animal physiology and pharmacology have revealed a serious gap in the future availability of qualified individuals to apply the principles of safety pharmacology in support of drug discovery and development. This is a significant deficiency that at present is only partially met with academic and professional society programs advancing a minimal level of training. In summary, with the exception that the future availability of suitably trained scientists is a critical need for the field that remains to be effectively addressed, the prospects for the future of safety pharmacology are hopeful and promising, and challenging for those individuals who want to assume this responsibility. What began in the early part of the new millennium as a relatively simple model of testing to assure the safety of Phase I clinical subjects and patients from acute deleterious effects on life-supporting organ systems has grown with experience and time to a science that mobilizes the principles of cellular and molecular biology and attempts to predict acute adverse events and those associated with long-term treatment. These challenges call for scientists with a broad range of in-depth scientific knowledge and an ability to adapt to a dynamic and forever changing industry. Identifying individuals who will serve today and training those who will serve in the future will fall to all of us who are committed to this important field of science.


Asunto(s)
Evaluación Preclínica de Medicamentos/tendencias , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Recolección de Datos , Humanos , Seguridad
8.
Handb Exp Pharmacol ; 229: 323-52, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26091646

RESUMEN

The kidney is a complex excretory organ playing a crucial role in various physiological processes such as fluid and electrolyte balance, control of blood pressure, removal of waste products, and drug disposition. Drug-induced kidney injury (DIKI) remains a significant cause of candidate drug attrition during drug development. However, the incidence of renal toxicities in preclinical studies is low, and the mechanisms by which drugs induce kidney injury are still poorly understood. Although some in vitro investigational tools have been developed, the in vivo assessment of renal function remains the most widely used methodology to identify DIKI. Stand-alone safety pharmacology studies usually include assessment of glomerular and hemodynamic function, coupled with urine and plasma analyses. However, as renal function is not part of the ICH S7A core battery, such studies are not routinely conducted by pharmaceutical companies. The most common approach consists in integrating renal/urinary measurements in repeat-dose toxicity studies. In addition to the standard analyses and histopathological examination of kidneys, novel promising urinary biomarkers have emerged over the last decade, offering greater sensitivity and specificity than traditional renal parameters. Seven of these biomarkers have been qualified by regulatory agencies for use in rat toxicity studies.


Asunto(s)
Descubrimiento de Drogas , Evaluación Preclínica de Medicamentos/métodos , Riñón/efectos de los fármacos , Animales , Biomarcadores , Control de Medicamentos y Narcóticos , Humanos , Riñón/anatomía & histología , Riñón/fisiología
9.
J Pharmacol Toxicol Methods ; : 107537, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38955286

RESUMEN

Our study retrospectively examines 51 non-rodent general toxicology studies conducted over the past 8 years to ascertain the influence of recording methodologies on baseline cardiovascular (CV) parameters and statistical sensitivity. Specifically, our work aims to evaluate the frequency of cardiovascular parameter recording categorized by therapeutic modality and study type, to assess the variability in these parameters based on measurement techniques, and to determine the sample sizes needed for detecting relevant changes in heart rate (HR), blood pressure (BP), and QTc interval in non-human primate (NHP) studies. Results indicate that electrocardiogram (ECG) measurements in dogs and NHP were recorded in 63% of studies, combined with BP recording in 18% of studies, while BP was never recorded alone. Trend analysis reveals a decline in the utilisation of restraint-based methods for ECG measurements post-2017, to the benefit of telemetry-based recordings, particularly Jacketed External Telemetry (JET). There was a marked difference in baseline values, with restraint-based methods showing significantly higher HR and QTc values compared to JET, likely linked to animal stress. Further analysis suggests an unrealistic and unethical sample size requirement in NHP studies for detecting biologically meaningful CV parameter changes using restraint-based methods, while JET methods necessitate significantly smaller sample sizes. This retrospective study indicates a notable shift from snapshots short-duration, restraint-based methods towards telemetry approaches over the recent years, especially with an increased usage of implanted telemetry. The transition contributes to potential consensus within industry or regulatory frameworks for optimal practices in assessing ECG, HR, and BP in general toxicology studies.

10.
J Pharmacol Toxicol Methods ; 127: 107511, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38710237

RESUMEN

The Health and Environmental Sciences Institute (HESI) is a nonprofit organization dedicated to resolving global health challenges through collaborative scientific efforts across academia, regulatory authorities and the private sector. Collaborative science across non-clinical disciplines offers an important keystone to accelerate the development of safer and more effective medicines. HESI works to address complex challenges by leveraging diverse subject-matter expertise across sectors offering access to resources, data and shared knowledge. In 2008, the HESI Cardiac Safety Committee (CSC) was established to improve public health by reducing unanticipated cardiovascular (CV)-related adverse effects from pharmaceuticals or chemicals. The committee continues to significantly impact the field of CV safety by bringing together experts from across sectors to address challenges of detecting and predicting adverse cardiac outcomes. Committee members have collaborated on the organization, management and publication of prospective studies, retrospective analyses, workshops, and symposia resulting in 38 peer reviewed manuscripts. Without this collaboration these manuscripts would not have been published. Through their work, the CSC is actively addressing challenges and opportunities in detecting potential cardiac failure modes using in vivo, in vitro and in silico models, with the aim of facilitating drug development and improving study design. By examining past successes and future prospects of the CSC, this manuscript sheds light on how the consortium's multifaceted approach not only addresses current challenges in detecting potential cardiac failure modes but also paves the way for enhanced drug development and study design methodologies. Further, exploring future opportunities and challenges will focus on improving the translational predictability of nonclinical evaluations and reducing reliance on animal research in CV safety assessments.


Asunto(s)
Cardiotoxicidad , Humanos , Animales , Cardiotoxicidad/prevención & control , Cardiotoxicidad/etiología , Academias e Institutos , Desarrollo de Medicamentos/métodos , Enfermedades Cardiovasculares , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/prevención & control
11.
Clin Pharmacol Ther ; 116(1): 106-116, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38709223

RESUMEN

The ICH E14/S7B Q&As highlighted the need for best practices concerning the design, execution, analysis, interpretation, and reporting of the in vivo non-rodent QT assay as a component of the integrated risk assessment to potentially support a TQT waiver or substitute. We conducted a dog telemetry study to assess the effects on QTc of six reference compounds (five positive and one negative) previously evaluated by Darpo et al. (2015) in humans. The sensitivity of the assay to detect QTc increases was determined, and exposure-response analysis was performed, as done in clinical practice. By-timepoint analysis showed QTc prolongation induced by moxifloxacin, dofetilide, dolasetron, ondansetron, and quinine within human relevant plasma exposures ranges. Moreover, a hysteresis was observed for quinine. As expected, levocetirizine showed no statistically significant effect on QTc across a range of exposure, well exceeding the therapeutic Cmax. Power analyses confirmed the study ability to detect statistically significant QTc changes of less than 10 milliseconds with 80% probability, even with a sample size as low as n = 4 animals. Finally, concentration-QTc modeling enabled to predict the minimal plasma concentration needed to detect a 10 milliseconds QTc prolongation, including for quinine. The comparison with clinical available data supported the relevance of dogs under these experimental conditions as a robust translational predictor of drug-induced QTc prolongation in humans as a key pillar of the integrated risk assessment.


Asunto(s)
Electrocardiografía , Síndrome de QT Prolongado , Perros , Animales , Estudios Prospectivos , Síndrome de QT Prolongado/inducido químicamente , Síndrome de QT Prolongado/diagnóstico , Electrocardiografía/efectos de los fármacos , Masculino , Femenino , Telemetría/métodos , Medición de Riesgo/métodos , Humanos , Frecuencia Cardíaca/efectos de los fármacos
12.
Nat Rev Drug Discov ; 23(7): 525-545, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38773351

RESUMEN

Secondary pharmacology screening of investigational small-molecule drugs for potentially adverse off-target activities has become standard practice in pharmaceutical research and development, and regulatory agencies are increasingly requesting data on activity against targets with recognized adverse effect relationships. However, the screening strategies and target panels used by pharmaceutical companies may vary substantially. To help identify commonalities and differences, as well as to highlight opportunities for further optimization of secondary pharmacology assessment, we conducted a broad-ranging survey across 18 companies under the auspices of the DruSafe leadership group of the International Consortium for Innovation and Quality in Pharmaceutical Development. Based on our analysis of this survey and discussions and additional research within the group, we present here an overview of the current state of the art in secondary pharmacology screening. We discuss best practices, including additional safety-associated targets not covered by most current screening panels, and present approaches for interpreting and reporting off-target activities. We also provide an assessment of the safety impact of secondary pharmacology screening, and a perspective on opportunities and challenges in this rapidly developing field.


Asunto(s)
Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Humanos , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/prevención & control , Animales , Industria Farmacéutica , Desarrollo de Medicamentos/métodos , Evaluación Preclínica de Medicamentos/métodos , Drogas en Investigación/farmacología , Drogas en Investigación/efectos adversos
13.
Front Toxicol ; 6: 1370045, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38646442

RESUMEN

The ICH S1B carcinogenicity global testing guideline has been recently revised with a novel addendum that describes a comprehensive integrated Weight of Evidence (WoE) approach to determine the need for a 2-year rat carcinogenicity study. In the present work, experts from different organizations have joined efforts to standardize as much as possible a procedural framework for the integration of evidence associated with the different ICH S1B(R1) WoE criteria. The framework uses a pragmatic consensus procedure for carcinogenicity hazard assessment to facilitate transparent, consistent, and documented decision-making and it discusses best-practices both for the organization of studies and presentation of data in a format suitable for regulatory review. First, it is acknowledged that the six WoE factors described in the addendum form an integrated network of evidence within a holistic assessment framework that is used synergistically to analyze and explain safety signals. Second, the proposed standardized procedure builds upon different considerations related to the primary sources of evidence, mechanistic analysis, alternative methodologies and novel investigative approaches, metabolites, and reliability of the data and other acquired information. Each of the six WoE factors is described highlighting how they can contribute evidence for the overall WoE assessment. A suggested reporting format to summarize the cross-integration of evidence from the different WoE factors is also presented. This work also notes that even if a 2-year rat study is ultimately required, creating a WoE assessment is valuable in understanding the specific factors and levels of human carcinogenic risk better than have been identified previously with the 2-year rat bioassay alone.

14.
J Mol Cell Cardiol ; 64: 108-19, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24051370

RESUMEN

Cardiomyocytes represent one of the most useful models to conduct cardiac research. A single adult heart yields millions of cardiomyocytes, but these cells do not survive for long after isolation. We aimed to determine whether inhibition of myosin II ATPase that is essential for muscle contraction may preserve fully differentiated adult cardiomyocytes. Using inhibitors of the myosin II ATPase, blebbistatin and N-benzyl-p-toluene sulphonamide (BTS), we preserved freshly isolated fully differentiated adult primary cardiomyocytes that were stored at a refrigerated temperature. Specifically, preserved cardiomyocytes stayed viable for a 2-week period with a stable expression of cardiac genes and retained the expression of key markers characteristic of cardiomyocytes. Furthermore, voltage-clamp, action potential, calcium transient and contractility studies confirmed that the preserved cardiomyocytes are comparable to freshly isolated cells. Long-term exposure of preserved cardiomyocytes to four tyrosine kinase inhibitors, sunitinib malate, dasatinib, sorafenib tosylate and imatinib mesylate, revealed their potential to induce cardiac toxicity that was manifested with a decrease in contractility and induction of cell death, but this toxicity was not observed in acute experiments conducted over the time course amenable to freshly prepared cardiomyocytes. This study introduces the concept that the inhibition of myosin II ATPase safeguards the structure and function of fully differentiated adult cardiomyocytes. The fact that these preserved cardiomyocytes can be used for numerous days after preparation makes them a robust and versatile tool in cardiac research and allows the investigation of long-term exposure to novel drugs on cardiomyocyte function.


Asunto(s)
Diferenciación Celular , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Animales , Supervivencia Celular/efectos de los fármacos , Análisis por Conglomerados , Perros , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Miosina Tipo II/antagonistas & inhibidores , Miosina Tipo II/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Proteínas Tirosina Quinasas/metabolismo , Sulfonamidas/farmacología , Tolueno/análogos & derivados , Tolueno/farmacología
15.
Toxicol Appl Pharmacol ; 268(3): 352-61, 2013 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-23415679

RESUMEN

Current diagnosis of drug-induced kidney injury (DIKI) primarily relies on detection of elevated plasma creatinine (Cr) or blood urea nitrogen (BUN) levels; however, both are indices of overall kidney function and changes are delayed with respect to onset of nephron injury. Our aim was to investigate whether early changes in new urinary DIKI biomarkers predict plasma Cr, BUN, renal hemodynamic and kidney morphological changes associated with kidney injury following a single dose of cisplatin (CDDP) using an integrated platform in rodent. Conscious surgically prepared male Han Wistar rats were given a single intraperitoneal dose of CDDP (15mg/kg). Glomerular filtration rate (GFR), effective renal plasma flow (ERPF), urinalysis, DIKI biomarkers, CDDP pharmacokinetics, blood pressures, heart rate, body temperature and electroencephalogram (EEG) were measured in the same vehicle- or CDDP-treated animals over 72h. Plasma chemistry (including Cr and BUN) and renal tissues were examined at study termination. Cisplatin caused progressive reductions of GFR, ERPF, heart rate and body temperature from day 1 (0-24h). DIKI biomarkers including alpha-glutathione S-transferase (α-GST) significantly increased as early as 6h post-dose, which preceded significant declines of GFR and ERPF (24h), increased plasma Cr and BUN (72h), and associated with renal acute tubular necrosis at 72h post-dose. The present study adds to the current understanding of CDDP action by demonstrating that early increases in urinary excretion of α-GST predict DIKI risk following acute exposure to CDDP in rats, before changes in traditional DIKI markers are evident.


Asunto(s)
Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/metabolismo , Cisplatino/metabolismo , Cisplatino/toxicidad , Lesión Renal Aguda/patología , Animales , Nitrógeno de la Urea Sanguínea , Tasa de Filtración Glomerular/efectos de los fármacos , Tasa de Filtración Glomerular/fisiología , Glutatión/metabolismo , Riñón/efectos de los fármacos , Riñón/metabolismo , Riñón/patología , Masculino , Distribución Aleatoria , Ratas , Ratas Wistar
16.
Toxicol Appl Pharmacol ; 273(2): 229-41, 2013 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-23732082

RESUMEN

Safety pharmacology (SP) is an essential part of the drug development process that aims to identify and predict adverse effects prior to clinical trials. SP studies are described in the International Conference on Harmonisation (ICH) S7A and S7B guidelines. The core battery and supplemental SP studies evaluate effects of a new chemical entity (NCE) at both anticipated therapeutic and supra-therapeutic exposures on major organ systems, including cardiovascular, central nervous, respiratory, renal and gastrointestinal. This review outlines the current practices and emerging concepts in SP studies including frontloading, parallel assessment of core battery studies, use of non-standard species, biomarkers, and combining toxicology and SP assessments. Integration of the newer approaches to routine SP studies may significantly enhance the scope of SP by refining and providing mechanistic insight to potential adverse effects associated with test compounds.


Asunto(s)
Descubrimiento de Drogas/normas , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/metabolismo , Preparaciones Farmacéuticas/normas , Animales , Descubrimiento de Drogas/métodos , Descubrimiento de Drogas/tendencias , Evaluación Preclínica de Medicamentos/métodos , Evaluación Preclínica de Medicamentos/normas , Evaluación Preclínica de Medicamentos/tendencias , Interacciones Farmacológicas/fisiología , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/prevención & control , Humanos , Preparaciones Farmacéuticas/metabolismo
17.
J Pharmacol Toxicol Methods ; 123: 107269, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37149063

RESUMEN

This appraisal of state-of-the-art manuscript highlights and expands upon the thoughts conveyed in the lecture of Dr. Jean-Pierre Valentin, recipient of the 2021 Distinguished Service Award of the Safety Pharmacology Society, given on the 2nd December 2021. The article reflects on the strengths, weaknesses, opportunities, and threats that surrounded the evolution of safety and secondary pharmacology over the last 3 decades with a particular emphasis on pharmaceutical drug development delivery, scientific and technological innovation, complexities of regulatory framework and people leadership and development. The article further built on learnings from past experiences to tackle constantly emerging issues and evolving landscape whilst being cognizant of the challenges facing these disciplines in the broader drug development and societal context.


Asunto(s)
Distinciones y Premios , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Farmacología , Humanos , Sociedades , Preparaciones Farmacéuticas , Evaluación Preclínica de Medicamentos
18.
Nat Rev Drug Discov ; 22(4): 317-335, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36781957

RESUMEN

For decades, preclinical toxicology was essentially a descriptive discipline in which treatment-related effects were carefully reported and used as a basis to calculate safety margins for drug candidates. In recent years, however, technological advances have increasingly enabled researchers to gain insights into toxicity mechanisms, supporting greater understanding of species relevance and translatability to humans, prediction of safety events, mitigation of side effects and development of safety biomarkers. Consequently, investigative (or mechanistic) toxicology has been gaining momentum and is now a key capability in the pharmaceutical industry. Here, we provide an overview of the current status of the field using case studies and discuss the potential impact of ongoing technological developments, based on a survey of investigative toxicologists from 14 European-based medium-sized to large pharmaceutical companies.


Asunto(s)
Industria Farmacéutica , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Humanos , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/prevención & control , Biomarcadores , Tecnología , Evaluación Preclínica de Medicamentos
19.
Pharmacol Res Perspect ; 11(1): e01059, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36748725

RESUMEN

Levetiracetam (LEV), a well-established anti-seizure medication (ASM), was launched before the original ICH S7B nonclinical guidance assessing QT prolongation potential and the introduction of the Comprehensive In Vitro Proarrhythmia Assay (CiPA) paradigm. No information was available on its effects on cardiac channels. The goal of this work was to "pressure test" the CiPA approach with LEV and check the concordance of nonclinical core and follow-up S7B assays with clinical and post-marketing data. The following experiments were conducted with LEV (0.25-7.5 mM): patch clamp assays on hERG (acute or trafficking effects), NaV 1.5, CaV 1.2, Kir 2.1, KV 7.1/mink, KV 1.5, KV 4.3, and HCN4; in silico electrophysiology modeling (Virtual Assay® software) in control, large-variability, and high-risk human ventricular cell populations; electrophysiology measurements in human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes and dog Purkinje fibers; ECG measurements in conscious telemetered dogs after single oral administration (150, 300, and 600 mg/kg). Except a slight inhibition (<10%) of hERG and KV 7.1/mink at 7.5 mM, that is, 30-fold the free therapeutic plasma concentration (FTPC) at 1500 mg, LEV did not affect any other cardiac channels or hERG trafficking. In both virtual and real human cardiomyocytes, and in dog Purkinje fibers, LEV induced no relevant changes in electrophysiological parameters or arrhythmia. No QTc prolongation was noted up to 2.7 mM unbound plasma levels in conscious dogs, corresponding to 10-fold the FTPC. Nonclinical assessment integrating CiPA assays shows the absence of QT prolongation and proarrhythmic risk of LEV up to at least 10-fold the FTPC and the good concordance with clinical and postmarketing data, although this does not exclude very rare occurrence of QT prolongation cases in patients with underlying risk factors.


Asunto(s)
Células Madre Pluripotentes Inducidas , Síndrome de QT Prolongado , Animales , Perros , Humanos , Levetiracetam/farmacología , Miocitos Cardíacos
20.
J Pharmacol Toxicol Methods ; 121: 107265, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36997076

RESUMEN

Recent updates and modifications to the clinical ICH E14 and nonclinical ICH S7B guidelines, which both relate to the evaluation of drug-induced delayed repolarization risk, provide an opportunity for nonclinical in vivo electrocardiographic (ECG) data to directly influence clinical strategies, interpretation, regulatory decision-making and product labeling. This opportunity can be leveraged with more robust nonclinical in vivo QTc datasets based upon consensus standardized protocols and experimental best practices that reduce variability and optimize QTc signal detection, i.e., demonstrate assay sensitivity. The immediate opportunity for such nonclinical studies is when adequate clinical exposures (e.g., supratherapeutic) cannot be safely achieved, or other factors limit the robustness of the clinical QTc evaluation, e.g., the ICH E14 Q5.1 and Q6.1 scenarios. This position paper discusses the regulatory historical evolution and processes leading to this opportunity and details the expectations of future nonclinical in vivo QTc studies of new drug candidates. The conduct of in vivo QTc assays that are consistently designed, executed and analyzed will lead to confident interpretation, and increase their value for clinical QTc risk assessment. Lastly, this paper provides the rationale and basis for our companion article which describes technical details on in vivo QTc best practices and recommendations to achieve the goals of the new ICH E14/S7B Q&As, see Rossman et al., 2023 (this journal).


Asunto(s)
Síndrome de QT Prolongado , Humanos , Síndrome de QT Prolongado/inducido químicamente , Síndrome de QT Prolongado/diagnóstico , Drogas en Investigación/efectos adversos , Electrocardiografía , Medición de Riesgo , Bioensayo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA