Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Radiology ; 310(2): e231319, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38319168

RESUMEN

Filters are commonly used to enhance specific structures and patterns in images, such as vessels or peritumoral regions, to enable clinical insights beyond the visible image using radiomics. However, their lack of standardization restricts reproducibility and clinical translation of radiomics decision support tools. In this special report, teams of researchers who developed radiomics software participated in a three-phase study (September 2020 to December 2022) to establish a standardized set of filters. The first two phases focused on finding reference filtered images and reference feature values for commonly used convolutional filters: mean, Laplacian of Gaussian, Laws and Gabor kernels, separable and nonseparable wavelets (including decomposed forms), and Riesz transformations. In the first phase, 15 teams used digital phantoms to establish 33 reference filtered images of 36 filter configurations. In phase 2, 11 teams used a chest CT image to derive reference values for 323 of 396 features computed from filtered images using 22 filter and image processing configurations. Reference filtered images and feature values for Riesz transformations were not established. Reproducibility of standardized convolutional filters was validated on a public data set of multimodal imaging (CT, fluorodeoxyglucose PET, and T1-weighted MRI) in 51 patients with soft-tissue sarcoma. At validation, reproducibility of 486 features computed from filtered images using nine configurations × three imaging modalities was assessed using the lower bounds of 95% CIs of intraclass correlation coefficients. Out of 486 features, 458 were found to be reproducible across nine teams with lower bounds of 95% CIs of intraclass correlation coefficients greater than 0.75. In conclusion, eight filter types were standardized with reference filtered images and reference feature values for verifying and calibrating radiomics software packages. A web-based tool is available for compliance checking.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Radiómica , Humanos , Reproducibilidad de los Resultados , Biomarcadores , Imagen Multimodal
2.
Radiology ; 305(2): 375-386, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35819326

RESUMEN

Background Stratifying high-risk histopathologic features in endometrial carcinoma is important for treatment planning. Radiomics analysis at preoperative MRI holds potential to identify high-risk phenotypes. Purpose To evaluate the performance of multiparametric MRI three-dimensional radiomics-based machine learning models for differentiating low- from high-risk histopathologic markers-deep myometrial invasion (MI), lymphovascular space invasion (LVSI), and high-grade status-and advanced-stage endometrial carcinoma. Materials and Methods This dual-center retrospective study included women with histologically proven endometrial carcinoma who underwent 1.5-T MRI before hysterectomy between January 2011 and July 2015. Exclusion criteria were tumor diameter less than 1 cm, missing MRI sequences or histopathology reports, neoadjuvant therapy, and malignant neoplasms other than endometrial carcinoma. Three-dimensional radiomics features were extracted after tumor segmentation at MRI (T2-weighted, diffusion-weighted, and dynamic contrast-enhanced MRI). Predictive features were selected in the training set with use of random forest (RF) models for each end point, and trained RF models were applied to the external test set. Five board-certified radiologists conducted MRI-based staging and deep MI assessment in the training set. Areas under the receiver operating characteristic curve (AUCs) were reported with balanced accuracies, and radiologists' readings were compared with radiomics with use of McNemar tests. Results In total, 157 women were included: 94 at the first institution (training set; mean age, 66 years ± 11 [SD]) and 63 at the second institution (test set; 67 years ± 12). RF models dichotomizing deep MI, LVSI, high grade, and International Federation of Gynecology and Obstetrics (FIGO) stage led to AUCs of 0.81 (95% CI: 0.68, 0.88), 0.80 (95% CI: 0.67, 0.93), 0.74 (95% CI: 0.61, 0.86), and 0.84 (95% CI: 0.72, 0.92), respectively, in the test set. In the training set, radiomics provided increased performance compared with radiologists' readings for identifying deep MI (balanced accuracy, 86% vs 79%; P = .03), while no evidence of a difference was observed in performance for advanced FIGO stage (80% vs 78%; P = .27). Conclusion Three-dimensional radiomics can stratify patients by using preoperative MRI according to high-risk histopathologic end points in endometrial carcinoma and provide nonsignificantly different or higher performance than radiologists in identifying advanced stage and deep myometrial invasion, respectively. © RSNA, 2022 Online supplemental material is available for this article. See also the editorial by Kido and Nishio in this issue.


Asunto(s)
Neoplasias Endometriales , Imágenes de Resonancia Magnética Multiparamétrica , Humanos , Femenino , Estudios Retrospectivos , Neoplasias Endometriales/diagnóstico por imagen , Neoplasias Endometriales/cirugía , Neoplasias Endometriales/patología , Imagen por Resonancia Magnética/métodos , Medición de Riesgo
3.
Radiology ; 295(2): 328-338, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32154773

RESUMEN

Background Radiomic features may quantify characteristics present in medical imaging. However, the lack of standardized definitions and validated reference values have hampered clinical use. Purpose To standardize a set of 174 radiomic features. Materials and Methods Radiomic features were assessed in three phases. In phase I, 487 features were derived from the basic set of 174 features. Twenty-five research teams with unique radiomics software implementations computed feature values directly from a digital phantom, without any additional image processing. In phase II, 15 teams computed values for 1347 derived features using a CT image of a patient with lung cancer and predefined image processing configurations. In both phases, consensus among the teams on the validity of tentative reference values was measured through the frequency of the modal value and classified as follows: less than three matches, weak; three to five matches, moderate; six to nine matches, strong; 10 or more matches, very strong. In the final phase (phase III), a public data set of multimodality images (CT, fluorine 18 fluorodeoxyglucose PET, and T1-weighted MRI) from 51 patients with soft-tissue sarcoma was used to prospectively assess reproducibility of standardized features. Results Consensus on reference values was initially weak for 232 of 302 features (76.8%) at phase I and 703 of 1075 features (65.4%) at phase II. At the final iteration, weak consensus remained for only two of 487 features (0.4%) at phase I and 19 of 1347 features (1.4%) at phase II. Strong or better consensus was achieved for 463 of 487 features (95.1%) at phase I and 1220 of 1347 features (90.6%) at phase II. Overall, 169 of 174 features were standardized in the first two phases. In the final validation phase (phase III), most of the 169 standardized features could be excellently reproduced (166 with CT; 164 with PET; and 164 with MRI). Conclusion A set of 169 radiomics features was standardized, which enabled verification and calibration of different radiomics software. © RSNA, 2020 Online supplemental material is available for this article. See also the editorial by Kuhl and Truhn in this issue.


Asunto(s)
Biomarcadores/análisis , Procesamiento de Imagen Asistido por Computador/normas , Programas Informáticos , Calibración , Fluorodesoxiglucosa F18 , Humanos , Neoplasias Pulmonares/diagnóstico por imagen , Imagen por Resonancia Magnética , Fantasmas de Imagen , Fenotipo , Tomografía de Emisión de Positrones , Radiofármacos , Reproducibilidad de los Resultados , Sarcoma/diagnóstico por imagen , Tomografía Computarizada por Rayos X
4.
J Magn Reson Imaging ; 52(5): 1542-1549, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32222054

RESUMEN

Pretreatment determination of renal cell carcinoma aggressiveness may help to guide clinical decision-making. PURPOSE: To evaluate the efficacy of residual convolutional neural network using routine MRI in differentiating low-grade (grade I-II) from high-grade (grade III-IV) in stage I and II renal cell carcinoma. STUDY TYPE: Retrospective. POPULATION: In all, 376 patients with 430 renal cell carcinoma lesions from 2008-2019 in a multicenter cohort were acquired. The 353 Fuhrman-graded renal cell carcinomas were divided into a training, validation, and test set with a 7:2:1 split. The 77 WHO/ISUP graded renal cell carcinomas were used as a separate WHO/ISUP test set. FIELD STRENGTH/SEQUENCE: 1.5T and 3.0T/T2 -weighted and T1 contrast-enhanced sequences. ASSESSMENT: The accuracy, sensitivity, and specificity of the final model were assessed. The receiver operating characteristic (ROC) curve and precision-recall curve were plotted to measure the performance of the binary classifier. A confusion matrix was drawn to show the true positive, true negative, false positive, and false negative of the model. STATISTICAL TESTS: Mann-Whitney U-test for continuous data and the chi-square test or Fisher's exact test for categorical data were used to compare the difference of clinicopathologic characteristics between the low- and high-grade groups. The adjusted Wald method was used to calculate the 95% confidence interval (CI) of accuracy, sensitivity, and specificity. RESULTS: The final deep-learning model achieved a test accuracy of 0.88 (95% CI: 0.73-0.96), sensitivity of 0.89 (95% CI: 0.74-0.96), and specificity of 0.88 (95% CI: 0.73-0.96) in the Fuhrman test set and a test accuracy of 0.83 (95% CI: 0.73-0.90), sensitivity of 0.92 (95% CI: 0.84-0.97), and specificity of 0.78 (95% CI: 0.68-0.86) in the WHO/ISUP test set. DATA CONCLUSION: Deep learning can noninvasively predict the histological grade of stage I and II renal cell carcinoma using conventional MRI in a multiinstitutional dataset with high accuracy. LEVEL OF EVIDENCE: 3 TECHNICAL EFFICACY STAGE: 2.


Asunto(s)
Carcinoma de Células Renales , Aprendizaje Profundo , Neoplasias Renales , Carcinoma de Células Renales/diagnóstico por imagen , Diferenciación Celular , Humanos , Neoplasias Renales/diagnóstico por imagen , Imagen por Resonancia Magnética , Estudios Retrospectivos
5.
Eur J Nucl Med Mol Imaging ; 46(4): 864-877, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30535746

RESUMEN

PURPOSE: The aim of this study was to validate previously developed radiomics models relying on just two radiomics features from 18F-fluorodeoxyglucose positron emission tomography (PET) and magnetic resonance imaging (MRI) images for prediction of disease free survival (DFS) and locoregional control (LRC) in locally advanced cervical cancer (LACC). METHODS: Patients with LACC receiving chemoradiotherapy were enrolled in two French and one Canadian center. Pre-treatment imaging was performed for each patient. Multicentric harmonization of the two radiomics features was performed with the ComBat method. The models for DFS (using the feature from apparent diffusion coefficient (ADC) MRI) and LRC (adding one PET feature to the DFS model) were tuned using one of the French cohorts (n = 112) and applied to the other French (n = 50) and the Canadian (n = 28) external validation cohorts. RESULTS: The DFS model reached an accuracy of 90% (95% CI [79-98%]) (sensitivity 92-93%, specificity 87-89%) in both the French and the Canadian cohorts. The LRC model reached an accuracy of 98% (95% CI [90-99%]) (sensitivity 86%, specificity 100%) in the French cohort and 96% (95% CI [80-99%]) (sensitivity 83%, specificity 100%) in the Canadian cohort. Accuracy was significantly lower without ComBat harmonization (82-85% and 71-86% for DFS and LRC, respectively). The best prediction using standard clinical variables was 56-60% only. CONCLUSIONS: The previously developed PET/MRI radiomics predictive models were successfully validated in two independent external cohorts. A proposed flowchart for improved management of patients based on these models should now be confirmed in future larger prospective studies.


Asunto(s)
Quimioradioterapia , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Imagen Multimodal , Tomografía de Emisión de Positrones , Neoplasias del Cuello Uterino/diagnóstico por imagen , Neoplasias del Cuello Uterino/terapia , Adulto , Anciano , Anciano de 80 o más Años , Sesgo , Supervivencia sin Enfermedad , Femenino , Fluorodesoxiglucosa F18 , Humanos , Persona de Mediana Edad , Recurrencia , Resultado del Tratamiento , Neoplasias del Cuello Uterino/patología
6.
J Neurooncol ; 142(2): 299-307, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30661193

RESUMEN

PURPOSE: Isocitrate dehydrogenase (IDH) and 1p19q codeletion status are importantin providing prognostic information as well as prediction of treatment response in gliomas. Accurate determination of the IDH mutation status and 1p19q co-deletion prior to surgery may complement invasive tissue sampling and guide treatment decisions. METHODS: Preoperative MRIs of 538 glioma patients from three institutions were used as a training cohort. Histogram, shape, and texture features were extracted from preoperative MRIs of T1 contrast enhanced and T2-FLAIR sequences. The extracted features were then integrated with age using a random forest algorithm to generate a model predictive of IDH mutation status and 1p19q codeletion. The model was then validated using MRIs from glioma patients in the Cancer Imaging Archive. RESULTS: Our model predictive of IDH achieved an area under the receiver operating characteristic curve (AUC) of 0.921 in the training cohort and 0.919 in the validation cohort. Age offered the highest predictive value, followed by shape features. Based on the top 15 features, the AUC was 0.917 and 0.916 for the training and validation cohort, respectively. The overall accuracy for 3 group prediction (IDH-wild type, IDH-mutant and 1p19q co-deletion, IDH-mutant and 1p19q non-codeletion) was 78.2% (155 correctly predicted out of 198). CONCLUSION: Using machine-learning algorithms, high accuracy was achieved in the prediction of IDH genotype in gliomas and moderate accuracy in a three-group prediction including IDH genotype and 1p19q codeletion.


Asunto(s)
Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/genética , Glioma/diagnóstico por imagen , Glioma/genética , Interpretación de Imagen Asistida por Computador/métodos , Imagen por Resonancia Magnética , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores de Tumor/genética , Neoplasias Encefálicas/patología , Cromosomas Humanos Par 1 , Cromosomas Humanos Par 19 , Estudios de Cohortes , Femenino , Glioma/patología , Humanos , Isocitrato Deshidrogenasa/genética , Aprendizaje Automático , Imagen por Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad , Imagen Multimodal/métodos , Mutación , Clasificación del Tumor , Adulto Joven
7.
Can Assoc Radiol J ; 70(4): 394-402, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31519372

RESUMEN

BACKGROUND: The personalization of oncologic treatment using radiomic signatures is mounting in nasopharyngeal carcinoma (NPC). We ascertain the predictive ability of 3D volumetric magnetic resonance imaging (MRI) texture features on NPC disease recurrence. METHODS: A retrospective study of 58 patients with NPC undergoing primary curative-intent treatment was performed. Forty-two image texture features were extracted from pre-treatment MRI in addition to clinical factors. A multivariate logistic regression was used to model the texture features. A receiver operating characteristic curve on 100 bootstrap samples was used to maximize generalizability to out-of-sample data. A Cox proportional model was used to predict disease recurrence in the final model. RESULTS: A total of 58 patients were included in the study. MRI texture features predicted disease recurrence with an area under the curve (AUC), sensitivity, and specificity of 0.79, 0.73, and 0.71, respectively. Loco-regional recurrence was predicted with AUC, sensitivity, and specificity of 0.82, 0.73 and 0.74 respectively while prediction for distant metastasis had an AUC, sensitivity, and specificity of 0.92, 0.79 and 0.84, respectively. Texture features on MRI had a hazard ratio of 4.37 (95% confidence interval 1.72-20.2) for disease recurrence when adjusting for age, sex, smoking, and TNM staging. CONCLUSION: Texture features on MRI are independent predictors of NPC recurrence in patients undergoing curative-intent treatment.


Asunto(s)
Interpretación de Imagen Asistida por Computador/métodos , Imagen por Resonancia Magnética , Carcinoma Nasofaríngeo/diagnóstico por imagen , Carcinoma Nasofaríngeo/patología , Recurrencia Local de Neoplasia/diagnóstico por imagen , Recurrencia Local de Neoplasia/patología , Femenino , Humanos , Imagenología Tridimensional , Masculino , Persona de Mediana Edad , Estadificación de Neoplasias , Valor Predictivo de las Pruebas , Estudios Retrospectivos , Sensibilidad y Especificidad
8.
Insights Imaging ; 15(1): 8, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38228979

RESUMEN

PURPOSE: To propose a new quality scoring tool, METhodological RadiomICs Score (METRICS), to assess and improve research quality of radiomics studies. METHODS: We conducted an online modified Delphi study with a group of international experts. It was performed in three consecutive stages: Stage#1, item preparation; Stage#2, panel discussion among EuSoMII Auditing Group members to identify the items to be voted; and Stage#3, four rounds of the modified Delphi exercise by panelists to determine the items eligible for the METRICS and their weights. The consensus threshold was 75%. Based on the median ranks derived from expert panel opinion and their rank-sum based conversion to importance scores, the category and item weights were calculated. RESULT: In total, 59 panelists from 19 countries participated in selection and ranking of the items and categories. Final METRICS tool included 30 items within 9 categories. According to their weights, the categories were in descending order of importance: study design, imaging data, image processing and feature extraction, metrics and comparison, testing, feature processing, preparation for modeling, segmentation, and open science. A web application and a repository were developed to streamline the calculation of the METRICS score and to collect feedback from the radiomics community. CONCLUSION: In this work, we developed a scoring tool for assessing the methodological quality of the radiomics research, with a large international panel and a modified Delphi protocol. With its conditional format to cover methodological variations, it provides a well-constructed framework for the key methodological concepts to assess the quality of radiomic research papers. CRITICAL RELEVANCE STATEMENT: A quality assessment tool, METhodological RadiomICs Score (METRICS), is made available by a large group of international domain experts, with transparent methodology, aiming at evaluating and improving research quality in radiomics and machine learning. KEY POINTS: • A methodological scoring tool, METRICS, was developed for assessing the quality of radiomics research, with a large international expert panel and a modified Delphi protocol. • The proposed scoring tool presents expert opinion-based importance weights of categories and items with a transparent methodology for the first time. • METRICS accounts for varying use cases, from handcrafted radiomics to entirely deep learning-based pipelines. • A web application has been developed to help with the calculation of the METRICS score ( https://metricsscore.github.io/metrics/METRICS.html ) and a repository created to collect feedback from the radiomics community ( https://github.com/metricsscore/metrics ).

9.
Med Image Anal ; 90: 102972, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37742374

RESUMEN

By focusing on metabolic and morphological tissue properties respectively, FluoroDeoxyGlucose (FDG)-Positron Emission Tomography (PET) and Computed Tomography (CT) modalities include complementary and synergistic information for cancerous lesion delineation and characterization (e.g. for outcome prediction), in addition to usual clinical variables. This is especially true in Head and Neck Cancer (HNC). The goal of the HEad and neCK TumOR segmentation and outcome prediction (HECKTOR) challenge was to develop and compare modern image analysis methods to best extract and leverage this information automatically. We present here the post-analysis of HECKTOR 2nd edition, at the 24th International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI) 2021. The scope of the challenge was substantially expanded compared to the first edition, by providing a larger population (adding patients from a new clinical center) and proposing an additional task to the challengers, namely the prediction of Progression-Free Survival (PFS). To this end, the participants were given access to a training set of 224 cases from 5 different centers, each with a pre-treatment FDG-PET/CT scan and clinical variables. Their methods were subsequently evaluated on a held-out test set of 101 cases from two centers. For the segmentation task (Task 1), the ranking was based on a Borda counting of their ranks according to two metrics: mean Dice Similarity Coefficient (DSC) and median Hausdorff Distance at 95th percentile (HD95). For the PFS prediction task, challengers could use the tumor contours provided by experts (Task 3) or rely on their own (Task 2). The ranking was obtained according to the Concordance index (C-index) calculated on the predicted risk scores. A total of 103 teams registered for the challenge, for a total of 448 submissions and 29 papers. The best method in the segmentation task obtained an average DSC of 0.759, and the best predictions of PFS obtained a C-index of 0.717 (without relying on the provided contours) and 0.698 (using the expert contours). An interesting finding was that best PFS predictions were reached by relying on DL approaches (with or without explicit tumor segmentation, 4 out of the 5 best ranked) compared to standard radiomics methods using handcrafted features extracted from delineated tumors, and by exploiting alternative tumor contours (automated and/or larger volumes encompassing surrounding tissues) rather than relying on the expert contours. This second edition of the challenge confirmed the promising performance of fully automated primary tumor delineation in PET/CT images of HNC patients, although there is still a margin for improvement in some difficult cases. For the first time, the prediction of outcome was also addressed and the best methods reached relatively good performance (C-index above 0.7). Both results constitute another step forward toward large-scale outcome prediction studies in HNC.

10.
Head Neck Tumor Chall (2022) ; 13626: 1-30, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37195050

RESUMEN

This paper presents an overview of the third edition of the HEad and neCK TumOR segmentation and outcome prediction (HECKTOR) challenge, organized as a satellite event of the 25th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI) 2022. The challenge comprises two tasks related to the automatic analysis of FDG-PET/CT images for patients with Head and Neck cancer (H&N), focusing on the oropharynx region. Task 1 is the fully automatic segmentation of H&N primary Gross Tumor Volume (GTVp) and metastatic lymph nodes (GTVn) from FDG-PET/CT images. Task 2 is the fully automatic prediction of Recurrence-Free Survival (RFS) from the same FDG-PET/CT and clinical data. The data were collected from nine centers for a total of 883 cases consisting of FDG-PET/CT images and clinical information, split into 524 training and 359 test cases. The best methods obtained an aggregated Dice Similarity Coefficient (DSCagg) of 0.788 in Task 1, and a Concordance index (C-index) of 0.682 in Task 2.

11.
Front Oncol ; 12: 920393, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35912214

RESUMEN

Introduction: There is a cumulative risk of 20-40% of developing brain metastases (BM) in solid cancers. Stereotactic radiotherapy (SRT) enables the application of high focal doses of radiation to a volume and is often used for BM treatment. However, SRT can cause adverse radiation effects (ARE), such as radiation necrosis, which sometimes cause irreversible damage to the brain. It is therefore of clinical interest to identify patients at a high risk of developing ARE. We hypothesized that models trained with radiomics features, deep learning (DL) features, and patient characteristics or their combination can predict ARE risk in patients with BM before SRT. Methods: Gadolinium-enhanced T1-weighted MRIs and characteristics from patients treated with SRT for BM were collected for a training and testing cohort (N = 1,404) and a validation cohort (N = 237) from a separate institute. From each lesion in the training set, radiomics features were extracted and used to train an extreme gradient boosting (XGBoost) model. A DL model was trained on the same cohort to make a separate prediction and to extract the last layer of features. Different models using XGBoost were built using only radiomics features, DL features, and patient characteristics or a combination of them. Evaluation was performed using the area under the curve (AUC) of the receiver operating characteristic curve on the external dataset. Predictions for individual lesions and per patient developing ARE were investigated. Results: The best-performing XGBoost model on a lesion level was trained on a combination of radiomics features and DL features (AUC of 0.71 and recall of 0.80). On a patient level, a combination of radiomics features, DL features, and patient characteristics obtained the best performance (AUC of 0.72 and recall of 0.84). The DL model achieved an AUC of 0.64 and recall of 0.85 per lesion and an AUC of 0.70 and recall of 0.60 per patient. Conclusion: Machine learning models built on radiomics features and DL features extracted from BM combined with patient characteristics show potential to predict ARE at the patient and lesion levels. These models could be used in clinical decision making, informing patients on their risk of ARE and allowing physicians to opt for different therapies.

12.
Clin Transl Radiat Oncol ; 33: 153-158, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35243026

RESUMEN

A vast majority of studies in the radiomics field are based on contours originating from radiotherapy planning. This kind of delineation (e.g. Gross Tumor Volume, GTV) is often larger than the true tumoral volume, sometimes including parts of other organs (e.g. trachea in Head and Neck, H&N studies) and the impact of such over-segmentation was little investigated so far. In this paper, we propose to evaluate and compare the performance between models using two contour types: those from radiotherapy planning, and those specifically delineated for radiomics studies. For the latter, we modified the radiotherapy contours to fit the true tumoral volume. The two contour types were compared when predicting Progression-Free Survival (PFS) using Cox models based on radiomics features extracted from FluoroDeoxyGlucose-Positron Emission Tomography (FDG-PET) and CT images of 239 patients with oropharyngeal H&N cancer collected from five centers, the data from the 2020 HECKTOR challenge. Using Dedicated contours demonstrated better performance for predicting PFS, where Harell's concordance indices of 0.61 and 0.69 were achieved for Radiotherapy and Dedicated contours, respectively. Using automatically Resegmented contours based on a fixed intensity range was associated with a C-index of 0.63. These results illustrate the importance of using clean dedicated contours that are close to the true tumoral volume in radiomics studies, even when tumor contours are already available from radiotherapy treatment planning.

13.
Med Image Anal ; 77: 102336, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35016077

RESUMEN

This paper relates the post-analysis of the first edition of the HEad and neCK TumOR (HECKTOR) challenge. This challenge was held as a satellite event of the 23rd International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI) 2020, and was the first of its kind focusing on lesion segmentation in combined FDG-PET and CT image modalities. The challenge's task is the automatic segmentation of the Gross Tumor Volume (GTV) of Head and Neck (H&N) oropharyngeal primary tumors in FDG-PET/CT images. To this end, the participants were given a training set of 201 cases from four different centers and their methods were tested on a held-out set of 53 cases from a fifth center. The methods were ranked according to the Dice Score Coefficient (DSC) averaged across all test cases. An additional inter-observer agreement study was organized to assess the difficulty of the task from a human perspective. 64 teams registered to the challenge, among which 10 provided a paper detailing their approach. The best method obtained an average DSC of 0.7591, showing a large improvement over our proposed baseline method and the inter-observer agreement, associated with DSCs of 0.6610 and 0.61, respectively. The automatic methods proved to successfully leverage the wealth of metabolic and structural properties of combined PET and CT modalities, significantly outperforming human inter-observer agreement level, semi-automatic thresholding based on PET images as well as other single modality-based methods. This promising performance is one step forward towards large-scale radiomics studies in H&N cancer, obviating the need for error-prone and time-consuming manual delineation of GTVs.


Asunto(s)
Neoplasias de Cabeza y Cuello , Tomografía Computarizada por Tomografía de Emisión de Positrones , Fluorodesoxiglucosa F18 , Neoplasias de Cabeza y Cuello/diagnóstico por imagen , Humanos , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Tomografía de Emisión de Positrones/métodos , Carga Tumoral
14.
Phys Med ; 88: 272-277, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34329921

RESUMEN

PURPOSE: Radiomic texture calculation requires discretizing image intensities within the region-of-interest. FBN (fixed-bin-number), FBS (fixed-bin-size) and FBN and FBS with intensity equalization (FBNequal, FBSequal) are four discretization approaches. A crucial choice is the voxel intensity (Hounsfield units, or HU) binning range. We assessed the effect of this choice on radiomic features. METHODS: The dataset comprised 95 patients with head-and-neck squamous-cell-carcinoma. Dual energy CT data was reconstructed at 21 electron energies (40, 45,… 140 keV). Each of 94 texture features were calculated with 64 extraction parameters. All features were calculated five times: original choice, left shift (-10/-20 HU), right shift (+10/+20 HU). For each feature, Spearman correlation between nominal and four variants were calculated to determine feature stability. This was done for six texture feature types (GLCM, GLRLM, GLSZM, GLDZM, NGTDM, and NGLDM) separately. This analysis was repeated for the four binning algorithms. Effect of feature instability on predictive ability was studied for lymphadenopathy as endpoint. RESULTS: FBN and FBNequal algorithms showed good stability (correlation values consistently >0.9). For FBS and FBSequal algorithms, while median values exceeded 0.9, the 95% lower bound decreased as a function of energy, with poor performance over the entire spectrum. FBNequal was the most stable algorithm, and FBS the least. CONCLUSIONS: We believe this is the first multi-energy systematic study of the impact of CT HU range used during intensity discretization for radiomic feature extraction. Future analyses should account for this source of uncertainty when evaluating the robustness of their radiomic signature.


Asunto(s)
Algoritmos , Procesamiento de Imagen Asistido por Computador , Humanos , Tomografía Computarizada por Rayos X
15.
Phys Med Biol ; 66(18)2021 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-34384070

RESUMEN

Microscopic energy deposition distributions from ionizing radiation vary depending on biological target size and are used to predict the biological effects of an irradiation. Ionizing radiation is thought to kill cells or inhibit the cell cycle mainly by damaging DNA in the cell nucleus. The size of cells and nuclei depends on tissue type, cell cycle, and malignancy, all of which vary between patients. The aim of this study was to develop methods to perform patient-specific microdosimetry, that being, determining microdosimetric quantities in volumes that correspond to the sizes of cells and nuclei observed in a patient's tissue. A histopathological sample extracted from a stage I lung adenocarcinoma patient was analyzed. A pouring simulation was used to generate a three-dimensional tissue model from cell and nucleus size information determined from the histopathological sample. Microdosimetric distributions includingf(y)andd(y)were determined forC60o,I192r,Y169bandI125in a patient-specific model containing a distribution of cell and nucleus sizes. Fixed radius models and a summation method were compared to the full patient-specific model to evaluate their suitability for fast determination of patient-specific microdosimetric parameters. In the summation method,f(y)from many fixed radii models are summed. Fixed radius models do not provide a close approximation of the full patient-specific modely¯fory¯dfor the lower energy sources investigated,Y169bandI125.The higher energy sources investigated,C60oandI192rare less sensitive to target size variation thanY169bandI125.The summation method yields the most accurate approximation of the full modeld(y)for all radioisotopes investigated. The use of a summation method allows for the computation of patient-specific microdosimetric distributions with the computing power of a personal computer. With appropriate biological inputs the microdosimetric distributions computed using these methods can yield a patient-specific relative biological effectiveness as part of a multiscale treatment planning approach.


Asunto(s)
Radioisótopos , Radiometría , Simulación por Computador , ADN , Humanos , Método de Montecarlo , Efectividad Biológica Relativa
16.
Curr Med Imaging ; 17(3): 374-383, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32652919

RESUMEN

PURPOSE: Both CT and PET radiomics is considered as a potential prognostic biomarker in head and neck cancer. This study investigates the value of fused pre-treatment functional imaging (18F-FDG PET/CT) radiomics for modeling of local recurrence of head and neck cancers. MATERIALS AND METHODS: Firstly, 298 patients have been divided into a training set (n = 192) and verification set (n = 106). Secondly, PETs and CTs are fused based on wavelet transform. Thirdly, radiomics features are extracted from the 3D tumor area from PETCT fusion. The training set is used to select the features reduction and predict local recurrence, and the random forest prediction models combining radiomics and clinical variables are constructed. Finally, the ROC curve and KM analysis are used to evaluate the prediction efficiency of the model on the validation set. RESULTS: Two PET/CT fusion radiomics features and three clinic parameters are extracted to construct the radiomics model. AUC value in the verification set 0.70 is better than no fused sets 0.69. The accuracy of 0.66 is not the highest value (0.67). Either consistency index CI 0.70 (from 0.67 to 0.70) or the p-value 0.025 (from 0.03 to 0.025) get the best result in all four models. CONCLUSION: The radiomics model based on the fusion of PETCT is better than the model based on PET or CT alone in predicting local recurrence, the inclusion of clinical parameters may result in more accurate predictions, which has certain guiding significance for the development of personalized, precise treatment scheme.


Asunto(s)
Neoplasias de Cabeza y Cuello , Tomografía Computarizada por Tomografía de Emisión de Positrones , Fluorodesoxiglucosa F18 , Neoplasias de Cabeza y Cuello/diagnóstico por imagen , Humanos , Recurrencia Local de Neoplasia/diagnóstico por imagen , Tomografía de Emisión de Positrones
17.
Phys Med ; 81: 162-169, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33461029

RESUMEN

The biological effects of ionizing radiation depend on the tissue, tumor type, radiation quality, and patient-specific factors. Inter-patient variation in cell/nucleus size may influence patient-specific dose response. However, this variability in dose response is not well investigated due to lack of available cell/nucleus size data. The aim of this study was to develop methods to derive cell/nucleus size distributions from digital images of 2D histopathological samples and use them to build digital 3D models for use in cellular dosimetry. Nineteen of sixty hematoxylin and eosin stained lung adenocarcinoma samples investigated passed exclusion criterion to be analyzed in the study. A difference of gaussians blob detection algorithm was used to identify nucleus centers and quantify cell spacing. Hematoxylin content was measured to determine nucleus radius. Pouring simulations were conducted to generate one-hundred 3D models containing volumes of equivalent cell spacing and nuclei radius to those in histopathological samples. The nuclei radius distributions of non-tumoral and cancerous regions appearing in the same slide were significantly different (p < 0.01) in all samples analyzed. The median nuclear-cytoplasmic ratio was 0.36 for non-tumoral cells and 0.50 for cancerous cells. The average cellular and nucleus packing densities in the 3D models generated were 65.9% (SD: 1.5%) and 13.3% (SD: 0.3%) respectively. Software to determine cell spacing and nuclei radius from histopathological samples was developed. 3D digital tissue models containing volumes with equivalent cell spacing, nucleus radius, and packing density to cancerous tissues were generated.


Asunto(s)
Algoritmos , Radiometría , Núcleo Celular , Humanos
18.
Nat Cancer ; 2(7): 709-722, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-35121948

RESUMEN

Despite widespread adoption of electronic health records (EHRs), most hospitals are not ready to implement data science research in the clinical pipelines. Here, we develop MEDomics, a continuously learning infrastructure through which multimodal health data are systematically organized and data quality is assessed with the goal of applying artificial intelligence for individual prognosis. Using this framework, currently composed of thousands of individuals with cancer and millions of data points over a decade of data recording, we demonstrate prognostic utility of this framework in oncology. As proof of concept, we report an analysis using this infrastructure, which identified the Framingham risk score to be robustly associated with mortality among individuals with early-stage and advanced-stage cancer, a potentially actionable finding from a real-world cohort of individuals with cancer. Finally, we show how natural language processing (NLP) of medical notes could be used to continuously update estimates of prognosis as a given individual's disease course unfolds.


Asunto(s)
Registros Electrónicos de Salud , Neoplasias , Inteligencia Artificial , Exactitud de los Datos , Humanos , Procesamiento de Lenguaje Natural , Neoplasias/diagnóstico
19.
Korean J Radiol ; 22(7): 1213-1224, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33739635

RESUMEN

OBJECTIVE: To develop a machine learning (ML) pipeline based on radiomics to predict Coronavirus Disease 2019 (COVID-19) severity and the future deterioration to critical illness using CT and clinical variables. MATERIALS AND METHODS: Clinical data were collected from 981 patients from a multi-institutional international cohort with real-time polymerase chain reaction-confirmed COVID-19. Radiomics features were extracted from chest CT of the patients. The data of the cohort were randomly divided into training, validation, and test sets using a 7:1:2 ratio. A ML pipeline consisting of a model to predict severity and time-to-event model to predict progression to critical illness were trained on radiomics features and clinical variables. The receiver operating characteristic area under the curve (ROC-AUC), concordance index (C-index), and time-dependent ROC-AUC were calculated to determine model performance, which was compared with consensus CT severity scores obtained by visual interpretation by radiologists. RESULTS: Among 981 patients with confirmed COVID-19, 274 patients developed critical illness. Radiomics features and clinical variables resulted in the best performance for the prediction of disease severity with a highest test ROC-AUC of 0.76 compared with 0.70 (0.76 vs. 0.70, p = 0.023) for visual CT severity score and clinical variables. The progression prediction model achieved a test C-index of 0.868 when it was based on the combination of CT radiomics and clinical variables compared with 0.767 when based on CT radiomics features alone (p < 0.001), 0.847 when based on clinical variables alone (p = 0.110), and 0.860 when based on the combination of visual CT severity scores and clinical variables (p = 0.549). Furthermore, the model based on the combination of CT radiomics and clinical variables achieved time-dependent ROC-AUCs of 0.897, 0.933, and 0.927 for the prediction of progression risks at 3, 5 and 7 days, respectively. CONCLUSION: CT radiomics features combined with clinical variables were predictive of COVID-19 severity and progression to critical illness with fairly high accuracy.


Asunto(s)
COVID-19/diagnóstico , Aprendizaje Automático , Índice de Severidad de la Enfermedad , Tomografía Computarizada por Rayos X/métodos , Enfermedad Crítica , Humanos , Masculino , Persona de Mediana Edad , Curva ROC , Estudios Retrospectivos , SARS-CoV-2/patogenicidad
20.
Biophys J ; 98(12): 3070-7, 2010 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-20550920

RESUMEN

The piezoelectric properties of single collagen type I fibrils in fascia were imaged with sub-20 nm spatial resolution using piezoresponse force microscopy. A detailed analysis of the piezoresponse force microscopy signal in controlled tip-fibril geometry revealed shear piezoelectricity parallel to the fibril axis. The direction of the displacement is preserved along the whole fiber length and is independent of the fiber conformation. It is shown that individual fibrils within bundles in skeletal muscle fascia can have opposite polar orientations and are organized into domains, i.e., groups of several fibers having the same polar orientation. We were also able to detect piezoelectric activity of collagen fibrils in the high-frequency range up to 200 kHz, suggesting that the mechanical response time of biomolecules to electrical stimuli can be approximately 5 micros.


Asunto(s)
Colágeno Tipo I/metabolismo , Colágeno Tipo I/ultraestructura , Imagen Molecular , Animales , Anisotropía , Fenómenos Biomecánicos , Colágeno Tipo I/química , Electricidad , Ratones , Microscopía de Fuerza Atómica , Modelos Moleculares , Nanotecnología , Estructura Terciaria de Proteína , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA