Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
2.
J Mater Sci Mater Med ; 26(2): 115, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25665841

RESUMEN

The aim of this study was to propose and validate a new unified method for testing dissolution rates of bioactive glasses and their variants, and the formation of calcium phosphate layer formation on their surface, which is an indicator of bioactivity. At present, comparison in the literature is difficult as many groups use different testing protocols. An ISO standard covers the use of simulated body fluid on standard shape materials but it does not take into account that bioactive glasses can have very different specific surface areas, as for glass powders. Validation of the proposed modified test was through round robin testing and comparison to the ISO standard where appropriate. The proposed test uses fixed mass per solution volume ratio and agitated solution. The round robin study showed differences in hydroxyapatite nucleation on glasses of different composition and between glasses of the same composition but different particle size. The results were reproducible between research facilities. Researchers should use this method when testing new glasses, or their variants, to enable comparison between the literature in the future.


Asunto(s)
Apatitas/química , Materiales Biomiméticos/química , Materiales Biomiméticos/normas , Líquidos Corporales/química , Cerámica/química , Vidrio/química , Ensayo de Materiales/normas , Apatitas/normas , Cerámica/análisis , Cerámica/normas , Vidrio/análisis , Vidrio/normas , Internacionalidad , Ensayo de Materiales/métodos , Tamaño de la Partícula , Estándares de Referencia , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
3.
J Mater Chem B ; 2(6): 668-680, 2014 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-32261285

RESUMEN

Chitosan has been explored as a potential component of biomaterials and scaffolds for many tissue engineering applications. Hybrid materials, where organic and inorganic networks interpenetrate at the molecular level, have been a particular focus of interest using 3-glycidoxypropyl trimethoxysilane (GPTMS) as a covalent crosslinker between the networks in a sol-gel process. GPTMS contains both an epoxide ring that can undergo a ring opening reaction with the primary amine of chitosan and a trimethoxysilane group that can co-condense with silica precursors to form a silica network. While many researchers have exploited this ring-opening reaction, it is not yet fully understood and thus the final product is still a matter of some dispute. Here, a detailed study of the reaction of GPTMS with chitosan under different pH conditions was carried out using a combination of solution state and solid state MAS NMR techniques. The reaction of GPTMS with chitosan at the primary amine to form a secondary amine was confirmed and the rate was found to increase at lower pH. However, a side-reaction was identified between GPTMS and water producing a diol species. The relative amounts of diol and chitosan-GPTMS species were 80 and 20% respectively and this ratio did not vary with pH. The functionalisation pH had an effect on the mechanical properties of 65 wt% organic monoliths where the properties of the organic component became more dominant. Scaffolds were fabricated by freeze drying and had pore diameters in excess of 140 µm, and tailorable by altering freezing temperature, which were suitable for tissue engineering applications. In both monoliths and scaffolds, increasing the organic content disrupted the inorganic network, leading to an increase in silica dissolution in SBF. However, the dissolution of silica and chitosan was congruent up to 4 weeks in SBF, illustrating the true hybrid nature resulting from covalent bonding between the networks.

4.
Acta Biomater ; 9(8): 7662-71, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23632373

RESUMEN

Bioactive glasses and inorganic/organic hybrids have great potential as biomedical implant materials. Sol-gel hybrids with interpenetrating networks of silica and biodegradable polymers can combine the bioactive properties of a glass with the toughness of a polymer. However, traditional calcium sources such as calcium nitrate and calcium chloride are unsuitable for hybrids. In this study calcium was incorporated by chelation to the polymer component. The calcium salt form of poly(γ-glutamic acid) (γCaPGA) was synthesized for use as both a calcium source and as the biodegradable toughening component of the hybrids. Hybrids of 40wt.% γCaPGA were successfully formed and had fine scale integration of Ca and Si ions, according to secondary ion mass spectrometry imaging, indicating a homogeneous distribution of organic and inorganic components. (29)Si magic angle spinning nuclear magnetic resonance data demonstrated that the network connectivity was unaltered with changing polymer molecular weight, as there was no perturbation to the overall Si speciation and silica network formation. Upon immersion in simulated body fluid a hydroxycarbonate apatite surface layer formed on the hybrids within 1week. The polymer molecular weight (Mw 30-120kDa) affected the mechanical properties of the resulting hybrids, but all hybrids had large strains to failure, >26%, and compressive strengths, in excess of 300MPa. The large strain to failure values showed that γCaPGA hybrids exhibited non-brittle behaviour whilst also incorporating calcium. Thus calcium incorporation by chelation to the polymer component is justified as a novel approach in hybrids for biomedical materials.


Asunto(s)
Apatitas/síntesis química , Materiales Biocompatibles/síntesis química , Líquidos Corporales/química , Calcio/química , Carbonatos/síntesis química , Ácido Poliglutámico/análogos & derivados , Dióxido de Silicio/química , Quelantes/química , Ensayo de Materiales , Transición de Fase , Ácido Poliglutámico/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA